Gravitation and Spacetime

Gravitation and Spacetime
Author: Hans C. Ohanian
Publisher: Cambridge University Press
Total Pages: 545
Release: 2013-04-08
Genre: Science
ISBN: 1107012945

This text provides a quantitative introduction to general relativity for advanced undergraduate and graduate students.

Mind Tools

Mind Tools
Author: Rudy Rucker
Publisher: Courier Corporation
Total Pages: 337
Release: 2013-11-21
Genre: Computers
ISBN: 0486492281

Originally published: Boston: Houghton Mifflin, 1987.

QED

QED
Author: Richard P. Feynman
Publisher: Princeton University Press
Total Pages: 193
Release: 2014-10-26
Genre: Science
ISBN: 140084746X

Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.

A Mathematical Gift, III

A Mathematical Gift, III
Author: Koji Shiga
Publisher: American Mathematical Society
Total Pages: 148
Release: 2005-07-18
Genre: Mathematics
ISBN: 9780821832844

This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".

What's Happening in the Mathematical Sciences

What's Happening in the Mathematical Sciences
Author: Barry Cipra
Publisher: American Mathematical Soc.
Total Pages: 108
Release:
Genre: Science
ISBN: 9780821890431

Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.

Symmetries in Fundamental Physics

Symmetries in Fundamental Physics
Author: Kurt Sundermeyer
Publisher: Springer
Total Pages: 806
Release: 2014-07-23
Genre: Science
ISBN: 3319065815

Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also understand the implications of quantum physics and symmetry considerations: Poincare invariance dictates both the characteristic properties of particles (mass, spin, ...) and the wave equations of spin 0, 1/2, 1, ... objects. Further, the work of C.N. Yang and R. Mills reveals the consequences of internal symmetries as exemplified in the symmetry group of elementary particle physics. Given this pivotal role of symmetries it is thus not surprising that current research in fundamental physics is to a great degree motivated and inspired by considerations of symmetry. The treatment of symmetries in this monograph ranges from classical physics to now well-established theories of fundamental interactions, to the latest research on unified theories and quantum gravity.

The Noether Theorems

The Noether Theorems
Author: Yvette Kosmann-Schwarzbach
Publisher: Springer Science & Business Media
Total Pages: 211
Release: 2010-11-17
Genre: Mathematics
ISBN: 0387878688

In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noether's achievements were remembered, and sometimes figure in quick historical accounts of the time. This book carries a translation of Noether's original paper into English, and then describes the strange history of its reception and the responses to her work. Ultimately the theorems became decisive in a shift from basing fundamental physics on conservations laws to basing it on symmetries, or at the very least, in thoroughly explaining the connection between these two families of ideas. The real significance of this book is that it shows very clearly how long it took before mathematicians and physicists began to recognize the seminal importance of Noether's results. This book is thoroughly researched and provides careful documentation of the textbook literature. Kosmann-Schwarzbach has thus thrown considerable light on this slow dance in which the mathematical tools necessary to study symmetry properties and conservation laws were apparently provided long before the orchestra arrives and the party begins.