Inertia-controlling Methods for Quadratic Programming

Inertia-controlling Methods for Quadratic Programming
Author: Philip E. Gill
Publisher:
Total Pages: 48
Release: 1988
Genre: Quadratic programming
ISBN:

We also derive recurrance relations that facilitate the efficient implementation of a class of inertia-controlling methods that maintain the factorization of a nonsingular matrix associated with the Karush-Kuhn-Tucker conditions."

Numerical Optimization

Numerical Optimization
Author: Jorge Nocedal
Publisher: Springer Science & Business Media
Total Pages: 686
Release: 2006-12-11
Genre: Mathematics
ISBN: 0387400656

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Computational Issues in High Performance Software for Nonlinear Optimization

Computational Issues in High Performance Software for Nonlinear Optimization
Author: Almerico Murli
Publisher: Springer
Total Pages: 158
Release: 2007-06-14
Genre: Business & Economics
ISBN: 0585267782

Computational Issues in High Performance Software for Nonlinear Research brings together in one place important contributions and up-to-date research results in this important area. Computational Issues in High Performance Software for Nonlinear Research serves as an excellent reference, providing insight into some of the most important research issues in the field.

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming
Author: Jon Lee
Publisher: Springer Science & Business Media
Total Pages: 687
Release: 2011-12-02
Genre: Mathematics
ISBN: 1461419271

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Modern Numerical Nonlinear Optimization

Modern Numerical Nonlinear Optimization
Author: Neculai Andrei
Publisher: Springer Nature
Total Pages: 824
Release: 2022-10-18
Genre: Mathematics
ISBN: 3031087208

This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications. The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.