Trace Ideals and Their Applications

Trace Ideals and Their Applications
Author: Barry Simon
Publisher: American Mathematical Soc.
Total Pages: 162
Release: 2005
Genre: Mathematics
ISBN: 0821849883

From a review of the first edition: Beautifully written and well organized ... indispensable for those interested in certain areas of mathematical physics ... for the expert and beginner alike. The author deserves to be congratulated both for his work in unifying a subject and for showing workers in the field new directions for future development. --Zentralblatt MATH This is a second edition of a well-known book on the theory of trace ideals in the algebra of operators in a Hilbert space. Because of the theory's many different applications, the book was widely used and much in demand. For this second edition, the author has added four chapters on the closely related theory of rank one perturbations of self-adjoint operators. He has also included a comprehensive index and an addendum describing some developments since the original notes were published. This book continues to be a vital source of information for those interested in the theory of trace ideals and in its applications to various areas of mathematical physics.

Numerical Range

Numerical Range
Author: Karl E. Gustafson
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461384982

The theories of quadratic forms and their applications appear in many parts of mathematics and the sciences. All students of mathematics have the opportunity to encounter such concepts and applications in their first course in linear algebra. This subject and its extensions to infinite dimen sions comprise the theory of the numerical range W(T). There are two competing names for W(T), namely, the numerical range of T and the field of values for T. The former has been favored historically by the func tional analysis community, the latter by the matrix analysis community. It is a toss-up to decide which is preferable, and we have finally chosen the former because it is our habit, it is a more efficient expression, and because in recent conferences dedicated to W(T), even the linear algebra commu nity has adopted it. Also, one universally refers to the numerical radius, and not to the field of values radius. Originally, Toeplitz and Hausdorff called it the Wertvorrat of a bilinear form, so other good names would be value field or form values. The Russian community has referred to it as the Hausdorff domain. Murnaghan in his early paper first called it the region of the complex plane covered by those values for an n x n matrix T, then the range of values of a Hermitian matrix, then the field of values when he analyzed what he called the sought-for region.

Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces

Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces
Author: Silvestru Sever Dragomir
Publisher: Springer Science & Business Media
Total Pages: 130
Release: 2013-09-14
Genre: Mathematics
ISBN: 331901448X

Aimed toward researchers, postgraduate students, and scientists in linear operator theory and mathematical inequalities, this self-contained monograph focuses on numerical radius inequalities for bounded linear operators on complex Hilbert spaces for the case of one and two operators. Students at the graduate level will learn some essentials that may be useful for reference in courses in functional analysis, operator theory, differential equations, and quantum computation, to name several. Chapter 1 presents fundamental facts about the numerical range and the numerical radius of bounded linear operators in Hilbert spaces. Chapter 2 illustrates recent results obtained concerning numerical radius and norm inequalities for one operator on a complex Hilbert space, as well as some special vector inequalities in inner product spaces due to Buzano, Goldstein, Ryff and Clarke as well as some reverse Schwarz inequalities and Grüss type inequalities obtained by the author. Chapter 3 presents recent results regarding the norms and the numerical radii of two bounded linear operators. The techniques shown in this chapter are elementary but elegant and may be accessible to undergraduate students with a working knowledge of operator theory. A number of vector inequalities in inner product spaces as well as inequalities for means of nonnegative real numbers are also employed in this chapter. All the results presented are completely proved and the original references are mentioned.

A Hilbert Space Problem Book

A Hilbert Space Problem Book
Author: P.R. Halmos
Publisher: Springer Science & Business Media
Total Pages: 385
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468493302

From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."

Hilbert Space Methods in Partial Differential Equations

Hilbert Space Methods in Partial Differential Equations
Author: Ralph E. Showalter
Publisher: Courier Corporation
Total Pages: 226
Release: 2011-09-12
Genre: Mathematics
ISBN: 0486135799

This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

Numerical Ranges II

Numerical Ranges II
Author: F. F. Bonsall
Publisher: Cambridge University Press
Total Pages: 189
Release: 1973-08-02
Genre: Mathematics
ISBN: 0521202272

The landlady, landlord, cat, trap, and cheese all take credit for catching the long-tailed rat who is really the only one who knows the truth of the matter.

Introductory Functional Analysis with Applications

Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
Total Pages: 706
Release: 1991-01-16
Genre: Mathematics
ISBN: 0471504599

KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2010-11-02
Genre: Mathematics
ISBN: 0387709142

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

High-Dimensional Probability

High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
Total Pages: 299
Release: 2018-09-27
Genre: Business & Economics
ISBN: 1108415199

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Spear Operators Between Banach Spaces

Spear Operators Between Banach Spaces
Author: Vladimir Kadets
Publisher: Springer
Total Pages: 176
Release: 2018-04-16
Genre: Mathematics
ISBN: 3319713337

This monograph is devoted to the study of spear operators, that is, bounded linear operators G between Banach spaces X and Y satisfying that for every other bounded linear operator T:X → Y there exists a modulus-one scalar ω such that ǁ G+ωTǁ = 1 + ǁTǁ. This concept extends the properties of the identity operator in those Banach spaces having numerical index one. Many examples among classical spaces are provided, being one of them the Fourier transform on L1. The relationships with the Radon-Nikodým property, with Asplund spaces and with the duality, and some isometric and isomorphic consequences are provided. Finally, Lipschitz operators satisfying the Lipschitz version of the equation above are studied. The book could be of interest to young researchers and specialists in functional analysis, in particular to those interested in Banach spaces and their geometry. It is essentially self-contained and only basic knowledge of functional analysis is needed.