Ii Geometry
Download Ii Geometry full books in PDF, epub, and Kindle. Read online free Ii Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Andreĭ Petrovich Kiselev |
Publisher | : |
Total Pages | : 192 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : |
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Author | : E.B. Vinberg |
Publisher | : Springer Science & Business Media |
Total Pages | : 263 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662029014 |
A very clear account of the subject from the viewpoints of elementary geometry, Riemannian geometry and group theory – a book with no rival in the literature. Mostly accessible to first-year students in mathematics, the book also includes very recent results which will be of interest to researchers in this field.
Author | : Igor Rostislavovich Shafarevich |
Publisher | : Springer Science & Business Media |
Total Pages | : 292 |
Release | : 1994 |
Genre | : Mathematics |
ISBN | : 9783540575542 |
The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.
Author | : Mikhail B. Skopenkov |
Publisher | : American Mathematical Society, Simons Laufer Mathematical Sciences Institute (SLMath, formerly MSRI) |
Total Pages | : 222 |
Release | : 2023-11-17 |
Genre | : Mathematics |
ISBN | : 1470460106 |
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material that is not standard in the school curriculum are included. To help students that might be unfamiliar with new material, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions. The book is based on classes taught by the authors at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, SLMath (formerly MSRI) and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Author | : Paola Magnaghi-Delfino |
Publisher | : Springer Nature |
Total Pages | : 322 |
Release | : 2021-04-03 |
Genre | : Mathematics |
ISBN | : 3030637026 |
The volume reports on interdisciplinary discussions and interactions between theoretical research and practical studies on geometric structures and their applications in architecture, the arts, design, education, engineering, and mathematics. These related fields of research can enrich each other and renew their mutual interest in these topics through networks of shared inspiration, and can ultimately enhance the quality of geometry and graphics education. Particular attention is dedicated to the contributions that women have made to the scientific community and especially mathematics. The book introduces engineers, architects and designers interested in computer applications, graphics and geometry to the latest advances in the field, with a particular focus on science, the arts and mathematics education.
Author | : David Mumford |
Publisher | : |
Total Pages | : 0 |
Release | : 2015 |
Genre | : Algebraic varieties |
ISBN | : 9789380250809 |
Several generations of students of algebraic geometry have learned the subject from David Mumford's fabled "Red Book" containing notes of his lectures at Harvard University. This book contains what Mumford had intended to be Volume II. It covers the material in the "Red Book" in more depth with several more topics added.
Author | : R.K. Lazarsfeld |
Publisher | : Springer Science & Business Media |
Total Pages | : 414 |
Release | : 2004-08-24 |
Genre | : History |
ISBN | : 9783540225331 |
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
Author | : Günter Harder |
Publisher | : Springer Science & Business Media |
Total Pages | : 376 |
Release | : 2011-04-21 |
Genre | : Mathematics |
ISBN | : 3834881597 |
This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved. Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.
Author | : Felix Klein |
Publisher | : Springer |
Total Pages | : 318 |
Release | : 2016-06-29 |
Genre | : Education |
ISBN | : 3662494450 |
These three volumes constitute the first complete English translation of Felix Klein’s seminal series “Elementarmathematik vom höheren Standpunkte aus”. “Complete” has a twofold meaning here: First, there now exists a translation of volume III into English, while until today the only translation had been into Chinese. Second, the English versions of volume I and II had omitted several, even extended parts of the original, while we now present a complete revised translation into modern English. The volumes, first published between 1902 and 1908, are lecture notes of courses that Klein offered to future mathematics teachers, realizing a new form of teacher training that remained valid and effective until today: Klein leads the students to gain a more comprehensive and methodological point of view on school mathematics. The volumes enable us to understand Klein’s far-reaching conception of elementarisation, of the “elementary from a higher standpoint”, in its implementation for school mathematics./div This volume II presents a paradigmatic realisation of Klein’s approach of elementarisation for teacher education. It is shown how the various geometries, elaborated particularly since the beginning of the 19th century, are revealed as becoming unified in a new restructured geometry. As Klein liked to stress: “Projective geometry is all geometry”. Non-Euclidean geometry proves to constitute a part of this unifying process. The teaching of geometry is discussed in a separate chapter, which provides moreover important information on the history of geometry teaching and an international comparison.
Author | : Arkadiy Skopenkov |
Publisher | : American Mathematical Society, Mathematical Sciences Research Institute |
Total Pages | : 196 |
Release | : 2021-02-11 |
Genre | : Mathematics |
ISBN | : 1470448785 |
This book is a translation from Russian of Part I of the book Mathematics Through Problems: From Olympiads and Math Circles to Profession. The other two parts, Geometry and Combinatorics, will be published soon. The main goal of this book is to develop important parts of mathematics through problems. The author tries to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover and recreate much of elementary mathematics and start edging into the sophisticated world of topics such as group theory, Galois theory, and so on, thus building a bridge (by showing that there is no gap) between standard high school exercises and more intricate and abstract concepts in mathematics. Definitions and/or references for material that is not standard in the school curriculum are included. However, many topics in the book are difficult when you start learning them from scratch. To help with this, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions The book is based on classes taught by the author at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.