Multi-omic Data Integration in Oncology

Multi-omic Data Integration in Oncology
Author: Chiara Romualdi
Publisher: Frontiers Media SA
Total Pages: 187
Release: 2020-12-03
Genre: Medical
ISBN: 2889661512

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Bioinformatics Analysis of Omics Data for Biomarker Identification in Clinical Research, Volume II

Bioinformatics Analysis of Omics Data for Biomarker Identification in Clinical Research, Volume II
Author: Lixin Cheng
Publisher: Frontiers Media SA
Total Pages: 757
Release: 2023-09-05
Genre: Science
ISBN: 283253175X

This Research Topic is part of a series with, "Bioinformatics Analysis of Omics Data for Biomarker Identification in Clinical Research - Volume I" (https://www.frontiersin.org/research-topics/13816/bioinformatics-analysis-of-omics-data-for-biomarker-identification-in-clinical-research) The advances and the decreasing cost of omics data enable profiling of disease molecular features at different levels, including bulk tissues, animal models, and single cells. Large volumes of omics data enhance the ability to search for information for preclinical study and provide the opportunity to leverage them to understand disease mechanisms, identify molecular targets for therapy, and detect biomarkers of treatment response. Identification of stable, predictive, and interpretable biomarkers is a significant step towards personalized medicine and therapy. Omics data from genomics, transcriptomics, proteomics, epigenomics, metagenomics, and metabolomics help to determine biomarkers for prognostic and diagnostic applications. Preprocessing of omics data is of vital importance as it aims to eliminate systematic experimental bias and technical variation while preserving biological variation. Dozens of normalization methods for correcting experimental variation and bias in omics data have been developed during the last two decades, while only a few consider the skewness between different sample states, such as the extensive over-repression of genes in cancers. The choice of normalization methods determines the fate of identified biomarkers or molecular signatures. From these considerations, the development of appropriate normalization methods or preprocessing strategies may promote biomarker identification and facilitate clinical decision-making.

Integrative Omics

Integrative Omics
Author: Manish Kumar Gupta
Publisher: Elsevier
Total Pages: 434
Release: 2024-05-03
Genre: Science
ISBN: 0443160937

Integrative Omics: Concepts, Methodology and Applications provides a holistic and integrated view of defining and applying network approaches, integrative tools, and methods to solve problems for the rationalization of genotype to phenotype relationships. The reference includes a range of chapters in a systemic 'step by step' manner, which begins with the basic concepts from Omic to Multi Integrative Omics approaches, followed by their full range of approaches, applications, emerging trends, and future trends. All key areas of Omics are covered including biological databases, sequence alignment, pharmacogenomics, nutrigenomics and microbial omics, integrated omics for Food Science and Identification of genes associated with disease, clinical data integration and data warehousing, translational omics as well as omics technology policy and society research. Integrative Omics: Concepts, Methodology and Applications highlights the recent concepts, methodologies, advancements in technologies and is also well-suited for researchers from both academic and industry background, undergraduate and graduate students who are mainly working in the area of computational systems biology, integrative omics and translational science. The book bridges the gap between biological sciences, physical sciences, computer science, statistics, data science, information technology and mathematics by presenting content specifically dedicated to mathematical models of biological systems. - Provides a holistic, integrated view of a defining and applying network approach, integrative tools, and methods to solve problems for rationalization of genotype to phenotype relationships - Offers an interdisciplinary approach to Databases, data analytics techniques, biological tools, network construction, analysis, modeling, prediction and simulation of biological systems leading to 'translational research', i.e., drug discovery, drug target prediction, and precision medicine - Covers worldwide methods, concepts, databases, and tools used in the construction of integrated pathways

Computational Methods for Multi-Omics Data Analysis in Cancer Precision Medicine

Computational Methods for Multi-Omics Data Analysis in Cancer Precision Medicine
Author: Ehsan Nazemalhosseini-Mojarad
Publisher: Frontiers Media SA
Total Pages: 433
Release: 2023-08-02
Genre: Science
ISBN: 2832530389

Cancer is a complex and heterogeneous disease often caused by different alterations. The development of human cancer is due to the accumulation of genetic and epigenetic modifications that could affect the structure and function of the genome. High-throughput methods (e.g., microarray and next-generation sequencing) can investigate a tumor at multiple levels: i) DNA with genome-wide association studies (GWAS), ii) epigenetic modifications such as DNA methylation, histone changes and microRNAs (miRNAs) iii) mRNA. The availability of public datasets from different multi-omics data has been growing rapidly and could facilitate better knowledge of the biological processes of cancer. Computational approaches are essential for the analysis of big data and the identification of potential biomarkers for early and differential diagnosis, and prognosis.