Hyperspherical Harmonics

Hyperspherical Harmonics
Author: John S. Avery
Publisher: Springer Science & Business Media
Total Pages: 265
Release: 2012-12-06
Genre: Science
ISBN: 9400923236

where d 3 3)2 ( L x - -- i3x j3x j i i>j Thus the Gegenbauer polynomials play a role in the theory of hyper spherical harmonics which is analogous to the role played by Legendre polynomials in the familiar theory of 3-dimensional spherical harmonics; and when d = 3, the Gegenbauer polynomials reduce to Legendre polynomials. The familiar sum rule, in 'lrlhich a sum of spherical harmonics is expressed as a Legendre polynomial, also has a d-dimensional generalization, in which a sum of hyper spherical harmonics is expressed as a Gegenbauer polynomial (equation (3-27»: The hyper spherical harmonics which appear in this sum rule are eigenfunctions of the generalized angular monentum 2 operator A , chosen in such a way as to fulfil the orthonormality relation: VIe are all familiar with the fact that a plane wave can be expanded in terms of spherical Bessel functions and either Legendre polynomials or spherical harmonics in a 3-dimensional space. Similarly, one finds that a d-dimensional plane wave can be expanded in terms of HYPERSPHERICAL HARMONICS xii "hyperspherical Bessel functions" and either Gegenbauer polynomials or else hyperspherical harmonics (equations ( 4 - 27) and ( 4 - 30) ) : 00 ik·x e = (d-4)!!A~oiA(d+2A-2)j~(kr)C~(~k'~) 00 (d-2)!!I(0) 2: iAj~(kr) 2:Y~ (["2k)Y (["2) A A=O ). l). l)J where I(O) is the total solid angle. This expansion of a d-dimensional plane wave is useful when we wish to calculate Fourier transforms in a d-dimensional space.

Hyperspherical Harmonics And Their Physical Applications

Hyperspherical Harmonics And Their Physical Applications
Author: James Emil Avery
Publisher: World Scientific
Total Pages: 300
Release: 2017-11-27
Genre: Science
ISBN: 9813229314

Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered by specialists, into an easily-used tool with a place in the working kit of all theoretical physicists, theoretical chemists and mathematicians. The theory presented here is accessible without the knowledge of Lie-groups and representation theory, and can be understood with an ordinary knowledge of calculus. The book is accompanied by programs and exercises designed for teaching and practical use.

Hyperspherical Harmonics and Generalized Sturmians

Hyperspherical Harmonics and Generalized Sturmians
Author: John S. Avery
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2006-04-11
Genre: Science
ISBN: 0306469448

This text explores the connections between the theory of hyperspherical harmonics, momentum-space quantum theory and generalized Sturmian basis functions. It also introduces methods which may be used to solve many-particle problems directly, without the use of the self-consistent-field approximation.; The method of many-electron Sturmians offers an interesting alternative to the usual SCF-CI methods for calculating atomic and molecular structure. When many-electron Sturmians are used, and when the basis potential is chosen to be the attractive potential of the nuclei in the system, the following advantages are offered: the matrix representation of the nuclear attraction potential is diagonal; the kinetic energy term vanishes from the secular equation; the Slater exponents of the atomic orbitals are automatically optimized; convergence is rapid; a correlated solution to the many-electron problem can be obtained directly, without the use of the SCF approximation; and excited states can be obtained with good accuracy.; The text should be of interest to advanced students and research workers in theoretical chemistry, physics and mathematics.

Hyperspherical Harmonics Expansion Techniques

Hyperspherical Harmonics Expansion Techniques
Author: Tapan Kumar Das
Publisher: Springer
Total Pages: 170
Release: 2015-11-26
Genre: Science
ISBN: 8132223616

The book provides a generalized theoretical technique for solving the fewbody Schrödinger equation. Straight forward approaches to solve it in terms of position vectors of constituent particles and using standard mathematical techniques become too cumbersome and inconvenient when the system contains more than two particles. The introduction of Jacobi vectors, hyperspherical variables and hyperspherical harmonics as an expansion basis is an elegant way to tackle systematically the problem of an increasing number of interacting particles. Analytic expressions for hyperspherical harmonics, appropriate symmetrisation of the wave function under exchange of identical particles and calculation of matrix elements of the interaction have been presented. Applications of this technique to various problems of physics have been discussed. In spite of straight forward generalization of the mathematical tools for increasing number of particles, the method becomes computationally difficult for more than a few particles. Hence various approximation methods have also been discussed. Chapters on the potential harmonics and its application to Bose-Einstein condensates (BEC) have been included to tackle dilute system of a large number of particles. A chapter on special numerical algorithms has also been provided. This monograph is a reference material for theoretical research in the few-body problems for research workers starting from advanced graduate level students to senior scientists.

Group Theory in Physics

Group Theory in Physics
Author: Wu-Ki Tung
Publisher: World Scientific
Total Pages: 368
Release: 1985
Genre: Science
ISBN: 9971966565

An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet.

Introduction To Modern Methods Of Quantum Many-body Theory And Their Applications

Introduction To Modern Methods Of Quantum Many-body Theory And Their Applications
Author: Adelchi Fabrocini
Publisher: World Scientific
Total Pages: 427
Release: 2002-08-19
Genre: Science
ISBN: 9814488135

This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories — the methods of density functional theory, coupled cluster theory, and correlated basis functions — in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking lack of pedagogical reference literature in the field that allows researchers to acquire the requisite physical insight and technical skills. It should, therefore, provide useful reference material for a broad range of theoretical physicists in condensed-matter and nuclear theory.

Quantum Theory of Angular Momentum

Quantum Theory of Angular Momentum
Author: Dmitriĭ Aleksandrovich Varshalovich
Publisher: World Scientific Publishing Company Incorporated
Total Pages: 514
Release: 1988
Genre: Science
ISBN: 9789971501075

Ch. 1. Elements of vector and tensor theory -- ch. 2. Angular momentum operators -- ch. 3. Irreducible tensors -- ch. 4. Wigner D-functions -- ch. 5. Spherical harmonics -- ch. 6. Spin functions -- ch. 7. Tensor spherical harmonics -- ch. 8. Clebsch-Gordan coefficients and 3jm symbols -- ch. 9. 6j symbols and the Racah coefficients -- ch. 10. 9j and 12j symbols -- ch. 11. The graphical method in angular momentum theory -- ch. 12. Sums involving vector addition and recoupling coefficients -- ch. 13. matrix elements of irreducible tensor operators

Quantum Theory for Chemical Applications

Quantum Theory for Chemical Applications
Author: Jochen Autschbach
Publisher: Oxford University Press, USA
Total Pages: 756
Release: 2020-09-17
Genre: Science
ISBN: 0190920807

"Quantum Theory for Chemical Applications (QTCA) Quantum theory, or more specifically, quantum mechanics is endlessly fascinating, curious & strange, and often considered to be difficult to learn. It is true that quantum mechanics is a mathematical theory. Its scope, its predictions, the wisdom we gain from its results, all these become fully clear only in the context of the relevant equations and calculations. But the study of quantum mechanics is definitely worth the effort, and - as I like to tell my students- it is not rocket science"--

The Physics of Quantum Mechanics

The Physics of Quantum Mechanics
Author: James Binney
Publisher: Oxford University Press, USA
Total Pages: 408
Release: 2013-12
Genre: Science
ISBN: 0199688575

This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.