Hyperspectral Imaging And Analysis For Sparse Reconstruction And Recognition
Download Hyperspectral Imaging And Analysis For Sparse Reconstruction And Recognition full books in PDF, epub, and Kindle. Read online free Hyperspectral Imaging And Analysis For Sparse Reconstruction And Recognition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Saurabh Prasad |
Publisher | : Springer Nature |
Total Pages | : 464 |
Release | : 2020-04-27 |
Genre | : Computers |
ISBN | : 3030386171 |
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Author | : Linmi Tao |
Publisher | : Springer Nature |
Total Pages | : 207 |
Release | : 2021-02-20 |
Genre | : Computers |
ISBN | : 9813344202 |
This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
Author | : Aurélio Campilho |
Publisher | : Springer |
Total Pages | : 528 |
Release | : 2014-10-09 |
Genre | : Computers |
ISBN | : 3319117580 |
The two volumes LNCS 8814 and 8815 constitute the thoroughly refereed proceedings of the 11th International Conference on Image Analysis and Recognition, ICIAR 2014, held in Vilamoura, Portugal, in October 2014. The 107 revised full papers presented were carefully reviewed and selected from 177 submissions. The papers are organized in the following topical sections: image representation and models; sparse representation; image restoration and enhancement; feature detection and image segmentation; classification and learning methods; document image analysis; image and video retrieval; remote sensing; applications; action, gestures and audio-visual recognition; biometrics; medical image processing and analysis; medical image segmentation; computer-aided diagnosis; retinal image analysis; 3D imaging; motion analysis and tracking; and robot vision.
Author | : Jie Chen |
Publisher | : BoD – Books on Demand |
Total Pages | : 137 |
Release | : 2020-01-22 |
Genre | : Science |
ISBN | : 1789851092 |
Hyperspectral imagery has received considerable attention in the last decade as it provides rich spectral information and allows the analysis of objects that are unidentifiable by traditional imaging techniques. It has a wide range of applications, including remote sensing, industry sorting, food analysis, biomedical imaging, etc. However, in contrast to RGB images from which information can be intuitively extracted, hyperspectral data is only useful with proper processing and analysis. This book covers theoretical advances of hyperspectral image processing and applications of hyperspectral processing, including unmixing, classification, super-resolution, and quality estimation with classical and deep learning methods.
Author | : Stefano Selci |
Publisher | : MDPI |
Total Pages | : 220 |
Release | : 2019-11-20 |
Genre | : Science |
ISBN | : 3039218220 |
This book includes some very recent applications and the newest emerging trends of hyper-spectral imaging (HSI). HSI is a very recent and strange beast, a sort of a melting pot of previous techniques and scientific interests, merging and concentrating the efforts of physicists, chemists, botanists, biologists, and physicians, to mention just a few, as well as experts in data crunching and statistical elaboration. For almost a century, scientific observation, from looking to planets and stars down to our own cells and below, could be divided into two main categories: analyzing objects on the basis of their physical dimension (recording size, position, weight, etc. and their variations) or on how the object emits, reflects, or absorbs part of the electromagnetic spectrum, i.e., spectroscopy. While the two aspects have been obviously entangled, instruments and skills have always been clearly distinct from each other. With HSI now available, this is no longer the case. This instrument can return specimen dimensionalities and spectroscopic properties to any single pixel of your specimen, in a single set of data. HSI modality is ubiquitous and scale-invariant enough to be used to mark terrestrial resources on the basis of a land map obtained from satellite observation (actually, the oldest application of this type) or to understand if the cell you are looking at is cancerous or perfectly healthy. For all these reasons, HSI represents one of the most exciting methodologies of the new millennium.
Author | : |
Publisher | : Elsevier |
Total Pages | : 802 |
Release | : 2019-09-29 |
Genre | : Science |
ISBN | : 0444639780 |
Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments
Author | : David Fleet |
Publisher | : Springer |
Total Pages | : 632 |
Release | : 2014-09-22 |
Genre | : Computers |
ISBN | : 9783319105833 |
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.
Author | : Licheng Jiao |
Publisher | : Elsevier |
Total Pages | : 790 |
Release | : 2020-01-18 |
Genre | : Technology & Engineering |
ISBN | : 0128204044 |
Brain and Nature-Inspired Learning, Computation and Recognition presents a systematic analysis of neural networks, natural computing, machine learning and compression, algorithms and applications inspired by the brain and biological mechanisms found in nature. Sections cover new developments and main applications, algorithms and simulations. Developments in brain and nature-inspired learning have promoted interest in image processing, clustering problems, change detection, control theory and other disciplines. The book discusses the main problems and applications pertaining to bio-inspired computation and recognition, introducing algorithm implementation, model simulation, and practical application of parameter setting. Readers will find solutions to problems in computation and recognition, particularly neural networks, natural computing, machine learning and compressed sensing. This volume offers a comprehensive and well-structured introduction to brain and nature-inspired learning, computation, and recognition. - Presents an invaluable systematic introduction to brain and nature-inspired learning, computation and recognition - Describes the biological mechanisms, mathematical analyses and scientific principles behind brain and nature-inspired learning, calculation and recognition - Systematically analyzes neural networks, natural computing, machine learning and compression, algorithms and applications inspired by the brain and biological mechanisms found in nature - Discusses the theory and application of algorithms and neural networks, natural computing, machine learning and compression perception
Author | : Prasad S. Thenkabail |
Publisher | : CRC Press |
Total Pages | : 333 |
Release | : 2018-12-07 |
Genre | : Science |
ISBN | : 1351659251 |
Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of- the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation. Volume II, Hyperspectral Indices and Image Classifications for Agriculture and Vegetation evaluates the performance of hyperspectral narrowband or imaging spectroscopy data with specific emphasis on the uses and applications of hyperspectral narrowband vegetation indices in characterizing, modeling, mapping, and monitoring agricultural crops and vegetation. This volume presents and discusses topics such as the non-invasive quantification of foliar pigments, leaf nitrogen concentration of cereal crop, the estimation of nitrogen content in crops and pastures, and forest leaf chlorophyll content, among others. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume II through the editors’ perspective. Key Features of Volume II: Provides the fundamentals of hyperspectral narrowband vegetation indices and hyperspectral derivative vegetation indices and their applications in agriculture and vegetation studies. Discusses the latest advances in hyperspectral image classification methods and their applications. Explains the massively big hyperspectral sensing data processing on cloud computing architectures. Highlights the state-of-the-art methods in the field of hyperspectral narrowband vegetation indices for monitoring agriculture, vegetation, and their properties such as plant water content, nitrogen, chlorophyll, and others at leaf, canopy, field, and landscape scales. Includes best global expertise on hyperspectral remote sensing of agriculture, crop water use, plant species detection, crop productivity and water productivity mapping, and modeling.
Author | : Mohamed Kamel |
Publisher | : Springer |
Total Pages | : 828 |
Release | : 2013-06-05 |
Genre | : Computers |
ISBN | : 3642390943 |
This book constitutes the thoroughly refereed proceedings of the 10th International Conference on Image Analysis and Recognition, ICIAR 2013, held in Póvoa do Varzim, Portugal, in June 2013, The 92 revised full papers presented were carefully reviewed and selected from 177 submissions. The papers are organized in topical sections on biometrics: behavioral; biometrics: physiological; classification and regression; object recognition; image processing and analysis: representations and models, compression, enhancement , feature detection and segmentation; 3D image analysis; tracking; medical imaging: image segmentation, image registration, image analysis, coronary image analysis, retinal image analysis, computer aided diagnosis, brain image analysis; cell image analysis; RGB-D camera applications; methods of moments; applications.