Homotopy Type Theory

Homotopy Type Theory
Author:
Publisher:
Total Pages: 0
Release: 2013
Genre: Homotopy theory
ISBN:

The present work has its origins in our collective attempts to develop a new style of "informal type theory" that can be read and understood by a human being, as a complement to a formal proof that can be checked by a machine. Univalent foundations is closely tied to the idea of a foundation of mathematics that can be implemented in a computer proof assistant."--Page vi

Modal Homotopy Type Theory

Modal Homotopy Type Theory
Author: David Corfield
Publisher: Oxford University Press
Total Pages: 208
Release: 2020-02-06
Genre: Philosophy
ISBN: 0192595032

"The old logic put thought in fetters, while the new logic gives it wings." For the past century, philosophers working in the tradition of Bertrand Russell - who promised to revolutionise philosophy by introducing the 'new logic' of Frege and Peano - have employed predicate logic as their formal language of choice. In this book, Dr David Corfield presents a comparable revolution with a newly emerging logic - modal homotopy type theory. Homotopy type theory has recently been developed as a new foundational language for mathematics, with a strong philosophical pedigree. Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy offers an introduction to this new language and its modal extension, illustrated through innovative applications of the calculus to language, metaphysics, and mathematics. The chapters build up to the full language in stages, right up to the application of modal homotopy type theory to current geometry. From a discussion of the distinction between objects and events, the intrinsic treatment of structure, the conception of modality as a form of general variation to the representation of constructions in modern geometry, we see how varied the applications of this powerful new language can be.

Topology Via Logic

Topology Via Logic
Author: Steven Vickers
Publisher: Cambridge University Press
Total Pages: 224
Release: 1989
Genre: Computers
ISBN: 9780521576512

Now in paperback, Topology via Logic is an advanced textbook on topology for computer scientists. Based on a course given by the author to postgraduate students of computer science at Imperial College, it has three unusual features. First, the introduction is from the locale viewpoint, motivated by the logic of finite observations: this provides a more direct approach than the traditional one based on abstracting properties of open sets in the real line. Second, the methods of locale theory are freely exploited. Third, there is substantial discussion of some computer science applications. Although books on topology aimed at mathematics exist, no book has been written specifically for computer scientists. As computer scientists become more aware of the mathematical foundations of their discipline, it is appropriate that such topics are presented in a form of direct relevance and applicability. This book goes some way towards bridging the gap.

Motivic Homotopy Theory

Motivic Homotopy Theory
Author: Bjorn Ian Dundas
Publisher: Springer Science & Business Media
Total Pages: 228
Release: 2007-07-11
Genre: Mathematics
ISBN: 3540458972

This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Type Theory and Formal Proof

Type Theory and Formal Proof
Author: Rob Nederpelt
Publisher: Cambridge University Press
Total Pages: 465
Release: 2014-11-06
Genre: Computers
ISBN: 1316061086

Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.

Category Theory

Category Theory
Author: Steve Awodey
Publisher: Oxford University Press
Total Pages: 328
Release: 2010-06-17
Genre: Mathematics
ISBN: 0199587361

A comprehensive reference to category theory for students and researchers in mathematics, computer science, logic, cognitive science, linguistics, and philosophy. Useful for self-study and as a course text, the book includes all basic definitions and theorems (with full proofs), as well as numerous examples and exercises.

From Categories to Homotopy Theory

From Categories to Homotopy Theory
Author: Birgit Richter
Publisher: Cambridge University Press
Total Pages: 402
Release: 2020-04-16
Genre: Mathematics
ISBN: 1108847625

Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.

Basic Category Theory

Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
Total Pages: 193
Release: 2014-07-24
Genre: Mathematics
ISBN: 1107044243

A short introduction ideal for students learning category theory for the first time.

Categorical Homotopy Theory

Categorical Homotopy Theory
Author: Emily Riehl
Publisher: Cambridge University Press
Total Pages: 371
Release: 2014-05-26
Genre: Mathematics
ISBN: 1139952633

This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.