Computational Methods in Commutative Algebra and Algebraic Geometry

Computational Methods in Commutative Algebra and Algebraic Geometry
Author: Wolmer Vasconcelos
Publisher: Springer Science & Business Media
Total Pages: 432
Release: 2004-05-18
Genre: Mathematics
ISBN: 9783540213116

This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.

Homological and Computational Methods in Commutative Algebra

Homological and Computational Methods in Commutative Algebra
Author: Aldo Conca
Publisher: Springer
Total Pages: 265
Release: 2017-11-16
Genre: Mathematics
ISBN: 3319619438

This volume collects contributions by leading experts in the area of commutative algebra related to the INdAM meeting “Homological and Computational Methods in Commutative Algebra” held in Cortona (Italy) from May 30 to June 3, 2016 . The conference and this volume are dedicated to Winfried Bruns on the occasion of his 70th birthday. In particular, the topics of this book strongly reflect the variety of Winfried Bruns’ research interests and his great impact on commutative algebra as well as its applications to related fields. The authors discuss recent and relevant developments in algebraic geometry, commutative algebra, computational algebra, discrete geometry and homological algebra. The book offers a unique resource, both for young and more experienced researchers seeking comprehensive overviews and extensive bibliographic references.

Introduction To Commutative Algebra

Introduction To Commutative Algebra
Author: Michael F. Atiyah
Publisher: CRC Press
Total Pages: 140
Release: 2018-03-09
Genre: Mathematics
ISBN: 0429973268

First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.

Commutative Algebra

Commutative Algebra
Author: David Eisenbud
Publisher: Springer Science & Business Media
Total Pages: 784
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461253500

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Determinantal Rings

Determinantal Rings
Author: Winfried Bruns
Publisher: Springer
Total Pages: 246
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540392742

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.

Commutative Algebra

Commutative Algebra
Author: Aron Simis
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 428
Release: 2020-03-09
Genre: Mathematics
ISBN: 3110617072

This unique book on commutative algebra is divided into two parts in order to facilitate its use in several types of courses. The first introductory part covers the basic theory, connections with algebraic geometry, computational aspects, and extensions to module theory. The more advanced second part covers material such as associated primes and primary decomposition, local rings, M-sequences and Cohen-Macaulay modules, and homological methods.

An Introduction to Homological Algebra

An Introduction to Homological Algebra
Author: Charles A. Weibel
Publisher: Cambridge University Press
Total Pages: 470
Release: 1995-10-27
Genre: Mathematics
ISBN: 113964307X

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Combinatorial Commutative Algebra

Combinatorial Commutative Algebra
Author: Ezra Miller
Publisher: Springer Science & Business Media
Total Pages: 442
Release: 2005-06-21
Genre: Mathematics
ISBN: 9780387237077

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs

Computational Homology

Computational Homology
Author: Tomasz Kaczynski
Publisher: Springer Science & Business Media
Total Pages: 488
Release: 2006-04-18
Genre: Mathematics
ISBN: 0387215972

Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.

A Singular Introduction to Commutative Algebra

A Singular Introduction to Commutative Algebra
Author: Gert-Martin Greuel
Publisher: Springer Science & Business Media
Total Pages: 601
Release: 2012-12-06
Genre: Mathematics
ISBN: 3662049635

This book can be understood as a model for teaching commutative algebra, and takes into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, the authors show how the concept can be worked on using a computer. The computations are exemplified with the computer algebra system Singular, developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD containing Singular as well as the examples and procedures explained in the book.