Holomorphic Spaces

Holomorphic Spaces
Author: Sheldon Jay Axler
Publisher: Cambridge University Press
Total Pages: 490
Release: 1998-05-28
Genre: Mathematics
ISBN: 9780521631938

Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.

Holomorphic Functions in the Plane and n-dimensional Space

Holomorphic Functions in the Plane and n-dimensional Space
Author: Klaus Gürlebeck
Publisher: Springer Science & Business Media
Total Pages: 407
Release: 2007-11-16
Genre: Mathematics
ISBN: 3764382716

Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter.

Interpolation and Sampling in Spaces of Analytic Functions

Interpolation and Sampling in Spaces of Analytic Functions
Author: Kristian Seip
Publisher: American Mathematical Soc.
Total Pages: 153
Release: 2004
Genre: Mathematics
ISBN: 0821835548

Based on a series of six lectures given by the author at the University of Michigan, this book is intended as an introduction to the topic of interpolation and sampling in analytic function spaces. The three major topics covered are Nevanlinna-Pick interpolation, Carleson's interpolation theorem, an

Introduction to Complex Analytic Geometry

Introduction to Complex Analytic Geometry
Author: Stanislaw Lojasiewicz
Publisher: Birkhäuser
Total Pages: 535
Release: 2013-03-09
Genre: Mathematics
ISBN: 3034876173

facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches (§2). The role played by the ring 0 A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on re movable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7).

Topics in Global Real Analytic Geometry

Topics in Global Real Analytic Geometry
Author: Francesca Acquistapace
Publisher: Springer Nature
Total Pages: 285
Release: 2022-06-07
Genre: Mathematics
ISBN: 3030966666

In the first two chapters we review the theory developped by Cartan, Whitney and Tognoli. Then Nullstellensatz is proved both for Stein algebras and for the algebra of real analytic functions on a C-analytic space. Here we find a relation between real Nullstellensatz and seventeenth Hilbert’s problem for positive semidefinite analytic functions. Namely, a positive answer to Hilbert’s problem implies a solution for the real Nullstellensatz more similar to the one for real polinomials. A chapter is devoted to the state of the art on this problem that is far from a complete answer. In the last chapter we deal with inequalities. We describe a class of semianalytic sets defined by countably many global real analytic functions that is stable under topological properties and under proper holomorphic maps between Stein spaces, that is, verifies a direct image theorem. A smaller class admits also a decomposition into irreducible components as it happens for semialgebraic sets. During the redaction some proofs have been simplified with respect to the original ones.