History Of Topology
Download History Of Topology full books in PDF, epub, and Kindle. Read online free History Of Topology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : I.M. James |
Publisher | : Elsevier |
Total Pages | : 1067 |
Release | : 1999-08-24 |
Genre | : Mathematics |
ISBN | : 0080534074 |
Topology, for many years, has been one of the most exciting and influential fields of research in modern mathematics. Although its origins may be traced back several hundred years, it was Poincaré who "gave topology wings" in a classic series of articles published around the turn of the century. While the earlier history, sometimes called the prehistory, is also considered, this volume is mainly concerned with the more recent history of topology, from Poincaré onwards.As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.
Author | : Jean Dieudonné |
Publisher | : Springer Science & Business Media |
Total Pages | : 666 |
Release | : 2009-09-01 |
Genre | : Mathematics |
ISBN | : 0817649077 |
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet
Author | : Paul Alexandroff |
Publisher | : Courier Corporation |
Total Pages | : 68 |
Release | : 2012-08-13 |
Genre | : Mathematics |
ISBN | : 0486155064 |
Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.
Author | : William G. Chinn |
Publisher | : MAA |
Total Pages | : 170 |
Release | : 1966 |
Genre | : Mathematics |
ISBN | : 0883856182 |
Over 150 problems and solutions.
Author | : Glen E. Bredon |
Publisher | : Springer Science & Business Media |
Total Pages | : 580 |
Release | : 1993-06-24 |
Genre | : Mathematics |
ISBN | : 0387979263 |
This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS
Author | : Theodore W. Gamelin |
Publisher | : Courier Corporation |
Total Pages | : 258 |
Release | : 2013-04-22 |
Genre | : Mathematics |
ISBN | : 0486320189 |
This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.
Author | : Stephen Barr |
Publisher | : Courier Corporation |
Total Pages | : 244 |
Release | : 2012-12-04 |
Genre | : Mathematics |
ISBN | : 048615274X |
Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.
Author | : David S. Richeson |
Publisher | : Princeton University Press |
Total Pages | : 336 |
Release | : 2019-07-23 |
Genre | : Mathematics |
ISBN | : 0691191999 |
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Author | : Richard Earl |
Publisher | : Oxford University Press, USA |
Total Pages | : 169 |
Release | : 2020-01-11 |
Genre | : MATHEMATICS |
ISBN | : 0198832680 |
How is a subway map different from other maps? What makes a knot knotted? What makes the M�bius strip one-sided? These are questions of topology, the mathematical study of properties preserved by twisting or stretching objects. In the 20th century topology became as broad and fundamental as algebra and geometry, with important implications for science, especially physics. In this Very Short Introduction Richard Earl gives a sense of the more visual elements of topology (looking at surfaces) as well as covering the formal definition of continuity. Considering some of the eye-opening examples that led mathematicians to recognize a need for studying topology, he pays homage to the historical people, problems, and surprises that have propelled the growth of this field. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Author | : Robert Penner |
Publisher | : Springer Nature |
Total Pages | : 201 |
Release | : 2020-04-25 |
Genre | : Mathematics |
ISBN | : 3030439968 |
These are notes from a graduate student course on algebraic topology and K-theory given by Daniel Quillen at the Massachusetts Institute of Technology during 1979-1980. He had just received the Fields Medal for his work on these topics among others and was funny and playful with a confident humility from the start. These are not meant to be polished lecture notes, rather, things are presented as did Quillen reflected in the hand-written notes, resisting any temptation to change or add notation, details or elaborations. Indeed, the text is faithful to Quillen's own exposition, even respecting the {\sl board-like presentation} of formulae, diagrams and proofs, omitting numbering theorems in favor of names and so on. This is meant to be Quillen on Quillen as it happened forty years ago, an informal text for a second-semester graduate student on topology, category theory and K-theory, a potential preface to studying Quillen's own landmark papers and an informal glimpse of his great mind. The intellectual pace of the lectures, namely fast and lively, is Quillen himself, and part of the point here is to capture some of this intimacy. To be sure, much has happened since then from this categorical perspective started by Grothendieck, and Misha Kapranov has contributed an Afterword in order to make it more useful to current students.