Highlights In Lie Algebraic Methods
Download Highlights In Lie Algebraic Methods full books in PDF, epub, and Kindle. Read online free Highlights In Lie Algebraic Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anthony Joseph |
Publisher | : Springer Science & Business Media |
Total Pages | : 236 |
Release | : 2011-10-20 |
Genre | : Mathematics |
ISBN | : 0817682740 |
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Author | : Robert N. Cahn |
Publisher | : Courier Corporation |
Total Pages | : 180 |
Release | : 2014-06-10 |
Genre | : Mathematics |
ISBN | : 0486150313 |
Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.
Author | : Maria Gorelik |
Publisher | : Springer Nature |
Total Pages | : 563 |
Release | : 2019-10-18 |
Genre | : Mathematics |
ISBN | : 3030235319 |
This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.
Author | : Amit K. Roy-Chowdhury |
Publisher | : CRC Press |
Total Pages | : 367 |
Release | : 2021-01-04 |
Genre | : Mathematics |
ISBN | : 1000116786 |
Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.
Author | : Geoffrey Mason |
Publisher | : Springer |
Total Pages | : 403 |
Release | : 2014-10-31 |
Genre | : Mathematics |
ISBN | : 3319098047 |
The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. These workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. At the beginning, the top universities in California and Utah hosted the meetings which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. The contributors to this volume have all participated in these Lie theory workshops and include in this volume expository articles which cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned-above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.
Author | : Vladimir Dobrev |
Publisher | : Springer |
Total Pages | : 419 |
Release | : 2018-11-28 |
Genre | : Mathematics |
ISBN | : 9811327157 |
This book is the first volume of proceedings from the joint conference X International Symposium “Quantum Theory and Symmetries” (QTS-X) and XII International Workshop “Lie Theory and Its Applications in Physics” (LT-XII), held on 19–25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place for mathematicians and theoretical and mathematical physicists. In dividing the material between the two volumes, the Editor has sought to select papers that are more oriented toward mathematics for the first volume, and those focusing more on physics for the second. However, this division is relative, since many papers are equally suitable for either volume. The topics addressed in this volume represent the latest trends in the fields covered by the joint conferences: representation theory, integrability, entanglement, quantum groups, number theory, conformal geometry, quantum affine superalgebras, noncommutative geometry. Further, they present various mathematical results: on minuscule modules, symmetry breaking operators, Kashiwara crystals, meta-conformal invariance, the superintegrable Zernike system.
Author | : Daniel Bump |
Publisher | : World Scientific Publishing Company |
Total Pages | : 292 |
Release | : 2017-01-17 |
Genre | : Mathematics |
ISBN | : 9814733466 |
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
Author | : Victor G. Kac |
Publisher | : Springer |
Total Pages | : 545 |
Release | : 2018-12-12 |
Genre | : Mathematics |
ISBN | : 3030021912 |
This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)
Author | : |
Publisher | : Elsevier |
Total Pages | : 357 |
Release | : 1996-09-27 |
Genre | : Mathematics |
ISBN | : 0080526950 |
This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field
Author | : Jacob Greenstein |
Publisher | : Springer Nature |
Total Pages | : 453 |
Release | : 2022-03-11 |
Genre | : Mathematics |
ISBN | : 3030638499 |
This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference “Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification”, held on the occasion of Chari’s 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari’s significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.