Higher Orbifolds And Deligne Mumford Stacks As Structured Infinity Topoi
Download Higher Orbifolds And Deligne Mumford Stacks As Structured Infinity Topoi full books in PDF, epub, and Kindle. Read online free Higher Orbifolds And Deligne Mumford Stacks As Structured Infinity Topoi ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David Carchedi |
Publisher | : American Mathematical Soc. |
Total Pages | : 132 |
Release | : 2020 |
Genre | : Education |
ISBN | : 1470441446 |
The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra but also to differential topology, complex geometry, the theory of supermanifolds, derived manifolds etc., where it produces a theory of higher generalized orbifolds appropriate for these settings. This universal framework yields new insights into the general theory of Deligne-Mumford stacks and orbifolds, including a representability criterion which gives a categorical characterization of such generalized Deligne-Mumford stacks. This specializes to a new categorical description of classical Deligne-Mumford stacks, which extends to derived and spectral Deligne-Mumford stacks as well.
Author | : Zhi Qi |
Publisher | : American Mathematical Society |
Total Pages | : 123 |
Release | : 2021-02-10 |
Genre | : Mathematics |
ISBN | : 1470443252 |
In this article, the author studies fundamental Bessel functions for $mathrm{GL}_n(mathbb F)$ arising from the Voronoí summation formula for any rank $n$ and field $mathbb F = mathbb R$ or $mathbb C$, with focus on developing their analytic and asymptotic theory. The main implements and subjects of this study of fundamental Bessel functions are their formal integral representations and Bessel differential equations. The author proves the asymptotic formulae for fundamental Bessel functions and explicit connection formulae for the Bessel differential equations.
Author | : Elaine M. Landry |
Publisher | : Oxford University Press |
Total Pages | : 486 |
Release | : 2017 |
Genre | : Mathematics |
ISBN | : 019874899X |
This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.
Author | : Angel Castro |
Publisher | : American Mathematical Soc. |
Total Pages | : 89 |
Release | : 2020-09-28 |
Genre | : Mathematics |
ISBN | : 1470442140 |
In this paper, the authors show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation.
Author | : Jacob Bedrossian |
Publisher | : American Mathematical Soc. |
Total Pages | : 154 |
Release | : 2020-09-28 |
Genre | : Mathematics |
ISBN | : 1470442175 |
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.
Author | : Benjamin Jaye |
Publisher | : American Mathematical Soc. |
Total Pages | : 97 |
Release | : 2020-09-28 |
Genre | : Mathematics |
ISBN | : 1470442132 |
Fix $dgeq 2$, and $sin (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $mu $ in $mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-Delta )^alpha /2$, $alpha in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.
Author | : Vasileios Chousionis |
Publisher | : American Mathematical Soc. |
Total Pages | : 153 |
Release | : 2020-09-28 |
Genre | : Mathematics |
ISBN | : 1470442159 |
The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.
Author | : Lisa Berger |
Publisher | : American Mathematical Soc. |
Total Pages | : 131 |
Release | : 2020-09-28 |
Genre | : Mathematics |
ISBN | : 1470442191 |
The authors study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^r-1(x + 1)(x + t)$ over the function field $mathbb F_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$ and $d$ is a positive integer, the authors compute the $L$-function of $J$ over $mathbb F_q(t^1/d)$ and show that the Birch and Swinnerton-Dyer conjecture holds for $J$ over $mathbb F_q(t^1/d)$.
Author | : Christophe Cornut |
Publisher | : American Mathematical Soc. |
Total Pages | : 150 |
Release | : 2020-09-28 |
Genre | : Mathematics |
ISBN | : 1470442213 |
The author constructs and studies a scheme theoretical version of the Tits vectorial building, relates it to filtrations on fiber functors, and uses them to clarify various constructions pertaining to affine Bruhat-Tits buildings, for which he also provides a Tannakian description.
Author | : Ulrich Bunke |
Publisher | : American Mathematical Soc. |
Total Pages | : 177 |
Release | : 2021-06-21 |
Genre | : Education |
ISBN | : 1470446855 |
We develop differential algebraic K-theory for rings of integers in number fields and we construct a cycle map from geometrized bundles of modules over such a ring to the differential algebraic K-theory. We also treat some of the foundational aspects of differential cohomology, including differential function spectra and the differential Becker-Gottlieb transfer. We then state a transfer index conjecture about the equality of the Becker-Gottlieb transfer and the analytic transfer defined by Lott. In support of this conjecture, we derive some non-trivial consequences which are provable by independent means.