Higher Dimensional Categories From Double To Multiple Categories
Download Higher Dimensional Categories From Double To Multiple Categories full books in PDF, epub, and Kindle. Read online free Higher Dimensional Categories From Double To Multiple Categories ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Marco Grandis |
Publisher | : World Scientific |
Total Pages | : 535 |
Release | : 2019-09-09 |
Genre | : Mathematics |
ISBN | : 9811205124 |
The study of higher dimensional categories has mostly been developed in the globular form of 2-categories, n-categories, omega-categories and their weak versions. Here we study a different form: double categories, n-tuple categories and multiple categories, with their weak and lax versions.We want to show the advantages of this form for the theory of adjunctions and limits. Furthermore, this form is much simpler in higher dimension, starting with dimension three where weak 3-categories (also called tricategories) are already quite complicated, much more than weak or lax triple categories.This book can be used as a textbook for graduate and postgraduate studies, and as a basis for research. Notions are presented in a 'concrete' way, with examples and exercises; the latter are endowed with a solution or hints. Part I, devoted to double categories, starts at basic category theory and is kept at a relatively simple level. Part II, on multiple categories, can be used independently by a reader acquainted with 2-dimensional categories.
Author | : Marco Grandis |
Publisher | : World Scientific |
Total Pages | : 390 |
Release | : 2021-03-05 |
Genre | : Mathematics |
ISBN | : 9811236100 |
Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a better understanding of their roots.This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers the basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications.A reader should have some elementary knowledge of these three subjects, or at least two of them, in order to be able to follow the main examples, appreciate the unifying power of the categorical approach, and discover the subterranean links brought to light and formalised by this perspective.Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications in Algebra and Topology, with a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields.In this second edition, the book has been entirely reviewed, adding many applications and exercises. All non-obvious exercises have now a solution (or a reference, in the case of an advanced topic); solutions are now collected in the last chapter.
Author | : Alessandra Palmigiano |
Publisher | : Springer Nature |
Total Pages | : 1149 |
Release | : 2023-09-02 |
Genre | : Philosophy |
ISBN | : 3031241177 |
Samson Abramsky’s wide-ranging contributions to logical and structural aspects of Computer Science have had a major influence on the field. This book is a rich collection of papers, inspired by and extending Abramsky’s work. It contains both survey material and new results, organised around six major themes: domains and duality, game semantics, contextuality and quantum computation, comonads and descriptive complexity, categorical and logical semantics, and probabilistic computation. These relate to different stages and aspects of Abramsky’s work, reflecting its exceptionally broad scope and his ability to illuminate and unify diverse topics. Chapters in the volume include a review of his entire body of work, spanning from philosophical aspects to logic, programming language theory, quantum theory, economics and psychology, and relating it to a theory of unification of sciences using dual adjunctions. The section on game semantics shows how Abramsky’s work has led to a powerful new paradigm for the semantics of computation. The work on contextuality and categorical quantum mechanics has been highly influential, and provides the foundation for increasingly widely used methods in quantum computing. The work on comonads and descriptive complexity is building bridges between currently disjoint research areas in computer science, relating Structure to Power. The volume also includes a scientific autobiography, and an overview of the contributions. The outstanding set of contributors to this volume, including both senior and early career academics, serve as testament to Samson Abramsky’s enduring influence. It will provide an invaluable and unique resource for both students and established researchers.
Author | : Simona Paoli |
Publisher | : Springer |
Total Pages | : 353 |
Release | : 2019-06-03 |
Genre | : Mathematics |
ISBN | : 3030056740 |
This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, is one of the simplest known algebraic structures yielding a model of weak n-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory. As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the interconnections between the main ideas and results.
Author | : Marcelo Aguiar |
Publisher | : Cambridge University Press |
Total Pages | : 853 |
Release | : 2020-03-19 |
Genre | : Mathematics |
ISBN | : 110849580X |
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincar -Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.
Author | : Marcelo Aguiar |
Publisher | : Cambridge University Press |
Total Pages | : 897 |
Release | : 2022-10-31 |
Genre | : Mathematics |
ISBN | : 100924373X |
The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras. This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.
Author | : Emily Riehl |
Publisher | : Cambridge University Press |
Total Pages | : 782 |
Release | : 2022-02-10 |
Genre | : Mathematics |
ISBN | : 1108952194 |
The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Author | : Emily Riehl |
Publisher | : Courier Dover Publications |
Total Pages | : 273 |
Release | : 2017-03-09 |
Genre | : Mathematics |
ISBN | : 0486820807 |
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Author | : Dominic Verity |
Publisher | : American Mathematical Soc. |
Total Pages | : 208 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0821841424 |
The primary purpose of this work is to characterise strict $\omega$-categories as simplicial sets with structure. The author proves the Street-Roberts conjecture in the form formulated by Ross Street in his work on Orientals, which states that they are exactly the ``complicial sets'' defined and named by John Roberts in his handwritten notes of that title (circa 1978). On the way the author substantially develops Roberts' theory of complicial sets itself and makes contributions to Street's theory of parity complexes. In particular, he studies a new monoidal closed structure on the category of complicial sets which he shows to be the appropriate generalisation of the (lax) Gray tensor product of 2-categories to this context. Under Street's $\omega$-categorical nerve construction, which the author shows to be an equivalence, this tensor product coincides with those of Steiner, Crans and others.
Author | : Tom Leinster |
Publisher | : Cambridge University Press |
Total Pages | : 193 |
Release | : 2014-07-24 |
Genre | : Mathematics |
ISBN | : 1107044243 |
A short introduction ideal for students learning category theory for the first time.