High-Level Feedback Control with Neural Networks

High-Level Feedback Control with Neural Networks
Author: Young Ho Kim
Publisher: World Scientific
Total Pages: 232
Release: 1998
Genre: Computers
ISBN: 9789810233761

Complex industrial or robotic systems with uncertainty and disturbances are difficult to control. As system uncertainty or performance requirements increase, it becomes necessary to augment traditional feedback controllers with additional feedback loops that effectively "add intelligence" to the system. Some theories of artificial intelligence (AI) are now showing how complex machine systems should mimic human cognitive and biological processes to improve their capabilities for dealing with uncertainty. This book bridges the gap between feedback control and AI. It provides design techniques for "high-level" neural-network feedback-control topologies that contain servo-level feedback-control loops as well as AI decision and training at the higher levels. Several advanced feedback topologies containing neural networks are presented, including "dynamic output feedback", "reinforcement learning" and "optimal design", as well as a "fuzzy-logic reinforcement" controller. The control topologies areintuitive, yet are derived using sound mathematical principles where proofs of stability are given so that closed-loop performance can be relied upon in using these control systems. Computer-simulation examples are given to illustrate the performance.

High-level Feedback Control With Neural Networks

High-level Feedback Control With Neural Networks
Author: Young Ho Kim
Publisher: World Scientific
Total Pages: 228
Release: 1998-09-28
Genre: Technology & Engineering
ISBN: 9814496456

Complex industrial or robotic systems with uncertainty and disturbances are difficult to control. As system uncertainty or performance requirements increase, it becomes necessary to augment traditional feedback controllers with additional feedback loops that effectively “add intelligence” to the system. Some theories of artificial intelligence (AI) are now showing how complex machine systems should mimic human cognitive and biological processes to improve their capabilities for dealing with uncertainty.This book bridges the gap between feedback control and AI. It provides design techniques for “high-level” neural-network feedback-control topologies that contain servo-level feedback-control loops as well as AI decision and training at the higher levels. Several advanced feedback topologies containing neural networks are presented, including “dynamic output feedback”, “reinforcement learning” and “optimal design”, as well as a “fuzzy-logic reinforcement” controller. The control topologies are intuitive, yet are derived using sound mathematical principles where proofs of stability are given so that closed-loop performance can be relied upon in using these control systems. Computer-simulation examples are given to illustrate the performance.

Reinforcement Learning and Approximate Dynamic Programming for Feedback Control

Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
Author: Frank L. Lewis
Publisher: John Wiley & Sons
Total Pages: 498
Release: 2013-01-28
Genre: Technology & Engineering
ISBN: 1118453972

Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.

Systems, Automation and Control

Systems, Automation and Control
Author: Nabil Derbel
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 290
Release: 2017-12-04
Genre: Technology & Engineering
ISBN: 3110468506

The fifth volume of the Series Advances in Systems, Signals and Devices, is dedicated to fields related to Systems, Automation and Control. The scope of this issue encompasses all aspects of the research, development and applications of the science and technology in these fields. Topics of this issue concern: system design, system identification, biological and economical models & control, modern control theory, nonlinear observers, control and application of chaos, adaptive/non-adaptive backstepping control techniques, advances in linear control theory, systems optimization, multivariable control, large scale and infinite dimension systems, nonlinear control, distributed control, predictive control, geometric control, adaptive control, optimal and stochastic control, robust control, neural control, fuzzy control, intelligent control systems, diagnostics, fault tolerant control, robotics and mechatronics, navigation, robotics and human-machine interaction, hierarchical and man-machine systems, etc. Authors are encouraged to submit novel contributions which include results of research or experimental work discussing new developments in the field of systems, automation and control. The series can be also addressed for editing special issues for novel developments in specific fields. The aim of this volume is to promote an international scientific progress in the fields of systems, automation and control. It provides at the same time an opportunity to be informed about interesting results that have been reported during the international SSD conferences.

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems
Author: Jinkun Liu
Publisher: Springer Science & Business Media
Total Pages: 375
Release: 2013-01-26
Genre: Technology & Engineering
ISBN: 3642348165

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.

Control Systems, Robotics and AutomatioN – Volume XVII

Control Systems, Robotics and AutomatioN – Volume XVII
Author: Heinz D. Unbehauen
Publisher: EOLSS Publications
Total Pages: 506
Release: 2009-10-11
Genre:
ISBN: 184826156X

This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.

Neural Network Control Of Robot Manipulators And Non-Linear Systems

Neural Network Control Of Robot Manipulators And Non-Linear Systems
Author: F W Lewis
Publisher: CRC Press
Total Pages: 470
Release: 1998-11-30
Genre: Technology & Engineering
ISBN: 9780748405961

There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.

Artificial Intelligence in Real-Time Control 1998

Artificial Intelligence in Real-Time Control 1998
Author: Y.H. Pao
Publisher: Pergamon
Total Pages: 296
Release: 1999-11-26
Genre: Computers
ISBN:

This symposium was the seventh in a very successful series in this field. Since the beginning of the series, there have been a number of very positive developments in the topical area of 'Intelligent Control'. In particular, the area referred to as 'situated control' has stimulated the formation of new perspectives towards real-time intelligent systems. The performances of such artificial species as walking cockroaches, maze-negotiating mice, coke-can collecting robots and the like have encouraged the exploration of yet more adaptive control perspectives. In this symposium, there was a strong wind of change bringing more consideration of the roles of learning, evolution, hybrid systems and so on under many diverse labels and for many different systems and circumstances.

Neural Systems for Robotics

Neural Systems for Robotics
Author: Omid Omidvar
Publisher: Academic Press
Total Pages: 369
Release: 1997-04-10
Genre: Computers
ISBN: 0125262809

Neural Systems for Robotics represents the most up-to-date developments in the rapidly growing aplication area of neural networks, which is one of the hottest application areas for neural networks technology. The book not only contains a comprehensive study of neurocontrollers in complex Robotics systems, written by highly respected researchers in the field but outlines a novel approach to solving Robotics problems. The importance of neural networks in all aspects of Robot arm manipulators, neurocontrol, and Robotic systems is also given thorough and in-depth coverage. All researchers and students dealing with Robotics will find Neural Systems for Robotics of immense interest and assistance. Focuses on the use of neural networks in robotics-one of the hottest application areas for neural networks technology Represents the most up-to-date developments in this rapidly growing application area of neural networks Contains a new and novel approach to solving Robotics problems

Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

Machine Learning Control – Taming Nonlinear Dynamics and Turbulence
Author: Thomas Duriez
Publisher: Springer
Total Pages: 229
Release: 2016-11-02
Genre: Technology & Engineering
ISBN: 3319406248

This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.