High-Dimensional Probability

High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
Total Pages: 299
Release: 2018-09-27
Genre: Business & Economics
ISBN: 1108415199

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Introduction to High-Dimensional Statistics

Introduction to High-Dimensional Statistics
Author: Christophe Giraud
Publisher: CRC Press
Total Pages: 410
Release: 2021-08-25
Genre: Computers
ISBN: 1000408353

Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

High-Dimensional Statistics

High-Dimensional Statistics
Author: Martin J. Wainwright
Publisher: Cambridge University Press
Total Pages: 571
Release: 2019-02-21
Genre: Business & Economics
ISBN: 1108498027

A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.

High Dimensional Probability IX

High Dimensional Probability IX
Author: Radosław Adamczak
Publisher: Springer Nature
Total Pages: 445
Release: 2023-06-05
Genre: Mathematics
ISBN: 3031269799

This volume collects selected papers from the Ninth High Dimensional Probability Conference, held virtually from June 15-19, 2020. These papers cover a wide range of topics and demonstrate how high-dimensional probability remains an active area of research with applications across many mathematical disciplines. Chapters are organized around four general topics: inequalities and convexity; limit theorems; stochastic processes; and high-dimensional statistics. High Dimensional Probability IX will be a valuable resource for researchers in this area.

High-Dimensional Probability

High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
Total Pages: 299
Release: 2018-09-27
Genre: Mathematics
ISBN: 1108244548

High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.

High Dimensional Probability VI

High Dimensional Probability VI
Author: Christian Houdré
Publisher: Springer Science & Business Media
Total Pages: 372
Release: 2013-04-19
Genre: Mathematics
ISBN: 3034804903

This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.​

High Dimensional Probability VIII

High Dimensional Probability VIII
Author: Nathael Gozlan
Publisher: Springer Nature
Total Pages: 457
Release: 2019-11-26
Genre: Mathematics
ISBN: 3030263916

This volume collects selected papers from the 8th High Dimensional Probability meeting held at Casa Matemática Oaxaca (CMO), Mexico. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, random graphs, information theory and convex geometry. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.

Probability

Probability
Author: Rick Durrett
Publisher: Cambridge University Press
Total Pages:
Release: 2010-08-30
Genre: Mathematics
ISBN: 113949113X

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

High Dimensional Probability III

High Dimensional Probability III
Author: Joergen Hoffmann-Joergensen
Publisher: Birkhäuser
Total Pages: 343
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034880596

The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s. Many of the problems that motivated researchers at that time were solved. But the powerful new tools created for their solution turned out to be applicable to other important areas of probability. They led to significant advances in the study of empirical processes and other topics in theoretical statistics and to a new approach to the study of aspects of Lévy processes and Markov processes in general. The papers in this book reflect these broad categories. The volume thus will be a valuable resource for postgraduates and reseachers in probability theory and mathematical statistics.