Hierarchical Modeling And Analysis For Spatial Data
Download Hierarchical Modeling And Analysis For Spatial Data full books in PDF, epub, and Kindle. Read online free Hierarchical Modeling And Analysis For Spatial Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sudipto Banerjee |
Publisher | : CRC Press |
Total Pages | : 470 |
Release | : 2003-12-17 |
Genre | : Mathematics |
ISBN | : 1135438080 |
Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,
Author | : J. Andrew Royle |
Publisher | : Elsevier |
Total Pages | : 463 |
Release | : 2008-10-15 |
Genre | : Science |
ISBN | : 0080559255 |
A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods.This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures.The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution* abundance models based on many sampling protocols, including distance sampling* capture-recapture models with individual effects* spatial capture-recapture models based on camera trapping and related methods* population and metapopulation dynamic models* models of biodiversity, community structure and dynamics - Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) - Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis - Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS - Computing support in technical appendices in an online companion web site
Author | : Sudipto Banerjee |
Publisher | : CRC Press |
Total Pages | : 587 |
Release | : 2014-09-12 |
Genre | : Mathematics |
ISBN | : 1439819173 |
Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and Modeling Since the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflects the major growth in spatial statistics as both a research area and an area of application. New to the Second Edition New chapter on spatial point patterns developed primarily from a modeling perspective New chapter on big data that shows how the predictive process handles reasonably large datasets New chapter on spatial and spatiotemporal gradient modeling that incorporates recent developments in spatial boundary analysis and wombling New chapter on the theoretical aspects of geostatistical (point-referenced) modeling Greatly expanded chapters on methods for multivariate and spatiotemporal modeling New special topics sections on data fusion/assimilation and spatial analysis for data on extremes Double the number of exercises Many more color figures integrated throughout the text Updated computational aspects, including the latest version of WinBUGS, the new flexible spBayes software, and assorted R packages The Only Comprehensive Treatment of the Theory, Methods, and Software This second edition continues to provide a complete treatment of the theory, methods, and application of hierarchical modeling for spatial and spatiotemporal data. It tackles current challenges in handling this type of data, with increased emphasis on observational data, big data, and the upsurge of associated software tools. The authors also explore important application domains, including environmental science, forestry, public health, and real estate.
Author | : Lance A. Waller |
Publisher | : John Wiley & Sons |
Total Pages | : 522 |
Release | : 2004-07-29 |
Genre | : Mathematics |
ISBN | : 0471662674 |
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
Author | : Andrew Gelman |
Publisher | : Cambridge University Press |
Total Pages | : 654 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 9780521686891 |
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Author | : Marta Blangiardo |
Publisher | : John Wiley & Sons |
Total Pages | : 322 |
Release | : 2015-06-02 |
Genre | : Mathematics |
ISBN | : 1118326555 |
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Author | : Hamid Reza Pourghasemi |
Publisher | : Elsevier |
Total Pages | : 800 |
Release | : 2019-01-18 |
Genre | : Science |
ISBN | : 0128156953 |
Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
Author | : Robert P. Haining |
Publisher | : CRC Press |
Total Pages | : 556 |
Release | : 2020-01-27 |
Genre | : Mathematics |
ISBN | : 0429529104 |
Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges.
Author | : Robert P. Haining |
Publisher | : Cambridge University Press |
Total Pages | : 462 |
Release | : 2003-04-17 |
Genre | : Business & Economics |
ISBN | : 9780521774376 |
Spatial Data Analysis: Theory and Practice, first published in 2003, provides a broad ranging treatment of the field of spatial data analysis. It begins with an overview of spatial data analysis and the importance of location (place, context and space) in scientific and policy related research. Covering fundamental problems concerning how attributes in geographical space are represented to the latest methods of exploratory spatial data analysis and spatial modeling, it is designed to take the reader through the key areas that underpin the analysis of spatial data, providing a platform from which to view and critically appreciate many of the key areas of the field. Parts of the text are accessible to undergraduate and master's level students, but it also contains sufficient challenging material that it will be of interest to geographers, social and economic scientists, environmental scientists and statisticians, whose research takes them into the area of spatial analysis.
Author | : Sudipto Banerjee |
Publisher | : CRC Press |
Total Pages | : 470 |
Release | : 2003-12-17 |
Genre | : Mathematics |
ISBN | : 020348780X |
Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,