Hausdorff Measures

Hausdorff Measures
Author: Claude Ambrose Rogers
Publisher: Cambridge University Press
Total Pages: 230
Release: 1998-10-22
Genre: Mathematics
ISBN: 9780521624916

When it was first published this was the first general account of Hausdorff measures, a subject that has important applications in many fields of mathematics. There are three chapters: the first contains an introduction to measure theory, paying particular attention to the study of non-s-finite measures. The second develops the most general aspects of the theory of Hausdorff measures, and the third gives a general survey of applications of Hausdorff measures followed by detailed accounts of two special applications. This edition has a foreword by Kenneth Falconer outlining the developments in measure theory since this book first appeared. Based on lectures given by the author at University College London, this book is ideal for graduate mathematicians with no previous knowledge of the subject, but experts in the field will also want a copy for their shelves.

The Geometry of Fractal Sets

The Geometry of Fractal Sets
Author: K. J. Falconer
Publisher: Cambridge University Press
Total Pages: 184
Release: 1985
Genre: Mathematics
ISBN: 9780521337052

A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.

Variational Methods in Image Segmentation

Variational Methods in Image Segmentation
Author: Jean-Michel Morel
Publisher: Springer Science & Business Media
Total Pages: 257
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468405675

This book contains both a synthesis and mathematical analysis of a wide set of algorithms and theories whose aim is the automatic segmen tation of digital images as well as the understanding of visual perception. A common formalism for these theories and algorithms is obtained in a variational form. Thank to this formalization, mathematical questions about the soundness of algorithms can be raised and answered. Perception theory has to deal with the complex interaction between regions and "edges" (or boundaries) in an image: in the variational seg mentation energies, "edge" terms compete with "region" terms in a way which is supposed to impose regularity on both regions and boundaries. This fact was an experimental guess in perception phenomenology and computer vision until it was proposed as a mathematical conjecture by Mumford and Shah. The third part of the book presents a unified presentation of the evi dences in favour of the conjecture. It is proved that the competition of one-dimensional and two-dimensional energy terms in a variational for mulation cannot create fractal-like behaviour for the edges. The proof of regularity for the edges of a segmentation constantly involves con cepts from geometric measure theory, which proves to be central in im age processing theory. The second part of the book provides a fast and self-contained presentation of the classical theory of rectifiable sets (the "edges") and unrectifiable sets ("fractals").

Fractals in Probability and Analysis

Fractals in Probability and Analysis
Author: Christopher J. Bishop
Publisher: Cambridge University Press
Total Pages: 415
Release: 2017
Genre: Mathematics
ISBN: 1107134110

A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.

Lectures on Real Analysis

Lectures on Real Analysis
Author: J. Yeh
Publisher: World Scientific
Total Pages: 568
Release: 2000
Genre: Mathematics
ISBN: 9789810239411

The theory of the Lebesgue integral is a main pillar in the foundation of modern analysis and its applications, including probability theory. This volume shows how and why the Lebesgue integral is such a universal and powerful concept. The lines of development of the theory are made clear by the order in which the main theorems are presented. Frequent references to earlier theorems made in the proofs emphasize the interdependence of the theorems and help to show how the various definitions and theorems fit together. Counter-examples are included to show why a hypothesis in a theorem cannot be dropped. The book is based upon a course on real analysis which the author has taught. It is particularly suitable for a one-year course at the graduate level. Precise statements and complete proofs are given for every theorem, with no obscurity left. For this reason the book is also suitable for self-study.

Measure Theory and Integration

Measure Theory and Integration
Author: G De Barra
Publisher: Horwood Publishing
Total Pages: 246
Release: 2003-07-15
Genre: Mathematics
ISBN: 9781904275046

This text approaches integration via measure theory as opposed to measure theory via integration, an approach which makes it easier to grasp the subject. Apart from its central importance to pure mathematics, the material is also relevant to applied mathematics and probability, with proof of the mathematics set out clearly and in considerable detail. Numerous worked examples necessary for teaching and learning at undergraduate level constitute a strong feature of the book, and after studying statements of results of the theorems, students should be able to attempt the 300 problem exercises which test comprehension and for which detailed solutions are provided. Approaches integration via measure theory, as opposed to measure theory via integration, making it easier to understand the subject Includes numerous worked examples necessary for teaching and learning at undergraduate level Detailed solutions are provided for the 300 problem exercises which test comprehension of the theorems provided