Harmonic and Complex Analysis in Several Variables

Harmonic and Complex Analysis in Several Variables
Author: Steven G. Krantz
Publisher: Springer
Total Pages: 429
Release: 2017-09-20
Genre: Mathematics
ISBN: 3319632310

Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and researchers in several applied disciplines will find the breadth and depth of the treatment of the subject highly useful.

Complex Analysis and Special Topics in Harmonic Analysis

Complex Analysis and Special Topics in Harmonic Analysis
Author: Carlos A. Berenstein
Publisher: Springer Science & Business Media
Total Pages: 491
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461384451

A companion volume to the text "Complex Variables: An Introduction" by the same authors, this book further develops the theory, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include: Boundary values of holomorphic functions in the sense of distributions; interpolation problems and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the theorem of L. Schwarz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic function theory.

Function Theory of Several Complex Variables

Function Theory of Several Complex Variables
Author: Steven George Krantz
Publisher: American Mathematical Soc.
Total Pages: 586
Release: 2001
Genre: Mathematics
ISBN: 0821827243

Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.

Complex Variables

Complex Variables
Author: Carlos A. Berenstein
Publisher: Springer Science & Business Media
Total Pages: 694
Release: 1991-05-23
Genre: Mathematics
ISBN: 9780387973494

This text gives an overview of the basic properties of holomorphic functions of one complex variable. Topics studied in this overview include a detailed description of differential forms, homotopy theory, and homology theory, as the analytic properties of holomorphic functions, the solvability of the inhomogeneous Cauchy-Riemann equation with emphasis on the notation of compact families, the theory of growth of subharmonic functions, and an introduction to the theory of sheaves, covering spaces and Riemann surfaces. To further illuminate the material, a large number of exercises of differing levels of difficulty have been added.

Tasty Bits of Several Complex Variables

Tasty Bits of Several Complex Variables
Author: Jiri Lebl
Publisher: Lulu.com
Total Pages: 142
Release: 2016-05-05
Genre: Science
ISBN: 1365095576

This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.

Elementary Theory of Analytic Functions of One or Several Complex Variables

Elementary Theory of Analytic Functions of One or Several Complex Variables
Author: Henri Cartan
Publisher: Courier Corporation
Total Pages: 242
Release: 2013-04-22
Genre: Mathematics
ISBN: 0486318672

Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.

Complex Analysis

Complex Analysis
Author: Friedrich Haslinger
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 348
Release: 2017-11-20
Genre: Mathematics
ISBN: 3110417243

In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy‘s integral theorem general versions of Runge‘s approximation theorem and Mittag-Leffler‘s theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Fréchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. Contents Complex numbers and functions Cauchy’s Theorem and Cauchy’s formula Analytic continuation Construction and approximation of holomorphic functions Harmonic functions Several complex variables Bergman spaces The canonical solution operator to Nuclear Fréchet spaces of holomorphic functions The -complex The twisted -complex and Schrödinger operators

Complex Variables

Complex Variables
Author: Steven G. Krantz
Publisher: CRC Press
Total Pages: 443
Release: 2007-09-19
Genre: Mathematics
ISBN: 1420010956

From the algebraic properties of a complete number field, to the analytic properties imposed by the Cauchy integral formula, to the geometric qualities originating from conformality, Complex Variables: A Physical Approach with Applications and MATLAB explores all facets of this subject, with particular emphasis on using theory in practice. The first five chapters encompass the core material of the book. These chapters cover fundamental concepts, holomorphic and harmonic functions, Cauchy theory and its applications, and isolated singularities. Subsequent chapters discuss the argument principle, geometric theory, and conformal mapping, followed by a more advanced discussion of harmonic functions. The author also presents a detailed glimpse of how complex variables are used in the real world, with chapters on Fourier and Laplace transforms as well as partial differential equations and boundary value problems. The final chapter explores computer tools, including Mathematica®, MapleTM, and MATLAB®, that can be employed to study complex variables. Each chapter contains physical applications drawing from the areas of physics and engineering. Offering new directions for further learning, this text provides modern students with a powerful toolkit for future work in the mathematical sciences.

Explorations in Harmonic Analysis

Explorations in Harmonic Analysis
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
Total Pages: 367
Release: 2009-05-24
Genre: Mathematics
ISBN: 0817646698

This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.