Stochastic Analysis

Stochastic Analysis
Author: Michael Craig Cranston
Publisher: American Mathematical Soc.
Total Pages: 634
Release: 1995
Genre: Mathematics
ISBN: 0821802895

This book deals with current developments in stochastic analysis and its interfaces with partial differential equations, dynamical systems, mathematical physics, differential geometry, and infinite-dimensional analysis. The origins of stochastic analysis can be found in Norbert Wiener's construction of Brownian motion and Kiyosi Itô's subsequent development of stochastic integration and the closely related theory of stochastic (ordinary) differential equations. The papers in this volume indicate the great strides that have been made in recent years, exhibiting the tremendous power and diversity of stochastic analysis while giving a clear indication of the unsolved problems and possible future directions for development. The collection represents the proceedings of the AMS Summer Institute on Stochastic Analysis, held in July 1993 at Cornell University. Many of the papers are largely expository in character while containing new results.

Sequences, Groups, and Number Theory

Sequences, Groups, and Number Theory
Author: Valérie Berthé
Publisher: Birkhäuser
Total Pages: 591
Release: 2018-04-09
Genre: Mathematics
ISBN: 331969152X

This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.

The Madison Symposium on Complex Analysis

The Madison Symposium on Complex Analysis
Author: Edgar Lee Stout
Publisher: American Mathematical Soc.
Total Pages: 490
Release: 1992
Genre: Mathematics
ISBN: 0821851470

This volume contains the proceedings of a Symposium on Complex Analysis, held at the University of Wisconsin at Madison in June 1991 on the occasion of the retirement of Walter Rudin. During the week of the conference, a group of about two hundred mathematicians from many nations gathered to discuss recent developments in complex analysis and to celebrate Rudin's long and productive career. Among the main subjects covered are applications of complex analysis to operator theory, polynomial convexity, holomorphic mappings, boundary behaviour of holomorphic functions, function theory on the unit disk and ball, and some aspects of the theory of partial differential equations related to complex analysis. Containing papers by some of the world's leading experts in these subjects, this book reports on current directions in complex analysis and presents an excellent mixture of the analytic and geometric aspects of the theory.

Mathematical Reviews

Mathematical Reviews
Author: American Mathematical Society
Publisher: American Mathematical Society(RI)
Total Pages: 572
Release: 1981-12
Genre: Mathematics
ISBN: