Hands On Machine Learning With Tensorflowjs
Download Hands On Machine Learning With Tensorflowjs full books in PDF, epub, and Kindle. Read online free Hands On Machine Learning With Tensorflowjs ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kai Sasaki |
Publisher | : Packt Publishing Ltd |
Total Pages | : 285 |
Release | : 2019-11-27 |
Genre | : Computers |
ISBN | : 1838827870 |
Hands-On Machine Learning with TensorFlow.js is a comprehensive guide that will help you easily get started with machine learning algorithms and techniques using TensorFlow.js. By the end of this book, you will be able to create and optimize your own web-based machine learning applications using practical examples.
Author | : Gant Laborde |
Publisher | : O'Reilly Media |
Total Pages | : 300 |
Release | : 2021-08-17 |
Genre | : Computers |
ISBN | : 9781492090793 |
Combining the demand for AI with the ubiquity of JavaScript was inevitable. With Google's TensorFlow.js framework, seasoned AI veterans and web developers alike can help propel the future of AI-driven websites. In this guide, author Gant Laborde--Google Developer Expert in machine learning and the web--provides a hands-on, end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers. You'll begin by working through some basic examples in TensorFlow.js before diving deeper into neural network architectures, DataFrames, TensorFlow Hub, model conversion, transfer learning, and more. Once you finish this book, you'll know how to build and deploy production-ready deep learning systems with TensorFlow.js. Explore tensors, the most fundamental structure of machine learning Convert data into tensors and back with a real-world example Combine AI with the web using TensorFlow.js and other tools Use resources to convert, train, and manage machine learning data Start building and training your own training models from scratch Learn how to create your own image classification models Examine transfer learning: retraining an advanced model to perform a new task
Author | : Gant Laborde |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 342 |
Release | : 2021-05-10 |
Genre | : Computers |
ISBN | : 149209076X |
Given the demand for AI and the ubiquity of JavaScript, TensorFlow.js was inevitable. With this Google framework, seasoned AI veterans and web developers alike can help propel the future of AI-driven websites. In this guide, author Gant Laborde--Google Developer Expert in machine learningand the web--provides a hands-on end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers. You'll begin by working through some basic examples in TensorFlow.js before diving deeper into neural network architectures, DataFrames, TensorFlow Hub, model conversion, transfer learning, and more. Once you finish this book, you'll know how to build and deploy production-readydeep learning systems with TensorFlow.js. Explore tensors, the most fundamental structure of machine learning Convert data into tensors and back with a real-world example Combine AI with the web using TensorFlow.js Use resources to convert, train, and manage machine learning data Build and train your own training models from scratch
Author | : Shanqing Cai |
Publisher | : Manning Publications |
Total Pages | : 350 |
Release | : 2019-10-07 |
Genre | : Computers |
ISBN | : 9781617296178 |
Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Author | : Ankit Jain |
Publisher | : Packt Publishing Ltd |
Total Pages | : 311 |
Release | : 2018-11-30 |
Genre | : Computers |
ISBN | : 1789132401 |
Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key FeaturesUse machine learning and deep learning principles to build real-world projectsGet to grips with TensorFlow's impressive range of module offeringsImplement projects on GANs, reinforcement learning, and capsule networkBook Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learnUnderstand the TensorFlow ecosystem using various datasets and techniquesCreate recommendation systems for quality product recommendationsBuild projects using CNNs, NLP, and Bayesian neural networksPlay Pac-Man using deep reinforcement learningDeploy scalable TensorFlow-based machine learning systemsGenerate your own book script using RNNsWho this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques
Author | : Anubhav Singh |
Publisher | : Packt Publishing Ltd |
Total Pages | : 390 |
Release | : 2020-05-15 |
Genre | : Computers |
ISBN | : 1789953790 |
Use the power of deep learning with Python to build and deploy intelligent web applications Key FeaturesCreate next-generation intelligent web applications using Python libraries such as Flask and DjangoImplement deep learning algorithms and techniques for performing smart web automationIntegrate neural network architectures to create powerful full-stack web applicationsBook Description When used effectively, deep learning techniques can help you develop intelligent web apps. In this book, you'll cover the latest tools and technological practices that are being used to implement deep learning in web development using Python. Starting with the fundamentals of machine learning, you'll focus on DL and the basics of neural networks, including common variants such as convolutional neural networks (CNNs). You'll learn how to integrate them into websites with the frontends of different standard web tech stacks. The book then helps you gain practical experience of developing a deep learning-enabled web app using Python libraries such as Django and Flask by creating RESTful APIs for custom models. Later, you'll explore how to set up a cloud environment for deep learning-based web deployments on Google Cloud and Amazon Web Services (AWS). Next, you'll learn how to use Microsoft's intelligent Emotion API, which can detect a person's emotions through a picture of their face. You'll also get to grips with deploying real-world websites, in addition to learning how to secure websites using reCAPTCHA and Cloudflare. Finally, you'll use NLP to integrate a voice UX through Dialogflow on your web pages. By the end of this book, you'll have learned how to deploy intelligent web apps and websites with the help of effective tools and practices. What you will learnExplore deep learning models and implement them in your browserDesign a smart web-based client using Django and FlaskWork with different Python-based APIs for performing deep learning tasksImplement popular neural network models with TensorFlow.jsDesign and build deep web services on the cloud using deep learningGet familiar with the standard workflow of taking deep learning models into productionWho this book is for This deep learning book is for data scientists, machine learning practitioners, and deep learning engineers who are looking to perform deep learning techniques and methodologies on the web. You will also find this book useful if you’re a web developer who wants to implement smart techniques in the browser to make it more interactive. Working knowledge of the Python programming language and basic machine learning techniques will be beneficial.
Author | : Charlie Gerard |
Publisher | : |
Total Pages | : 0 |
Release | : 2021 |
Genre | : |
ISBN | : 9781484278888 |
Build machine learning web applications without having to learn a new language. This book will help you develop basic knowledge of machine learning concepts and applications. You'll learn not only theory, but also dive into code samples and example projects with TensorFlow.js. Using these skills and your already honed skills as a web developer, you'll add a whole new field of development to your skill set. This will give you a more concrete understanding of the possibilities offered by machine learning. Discover how ML will impact the future of not just programming in general, but web development specifically. Get started in machine learning with web technologies. Machine learning is currently one of the most exciting technology fields with the potential to impact industries from health to home automation to retail, and even art. Google has now introduced TensorFlow.js-an iteration of TensorFlow aimed directly at web developers. Practical Machine Learning in JavaScript will help you stay relevant in the tech industry with new tools, trends, and best practices. You will: Use the JavaScript framework for ML Build machine learning applications for the web Develop dynamic and intelligent web content.
Author | : Anirudh Koul |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 585 |
Release | : 2019-10-14 |
Genre | : Computers |
ISBN | : 1492034819 |
Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users
Author | : Burak Kanber |
Publisher | : Packt Publishing Ltd |
Total Pages | : 343 |
Release | : 2018-05-29 |
Genre | : Computers |
ISBN | : 1788990307 |
A definitive guide to creating an intelligent web application with the best of machine learning and JavaScript Key Features Solve complex computational problems in browser with JavaScript Teach your browser how to learn from rules using the power of machine learning Understand discoveries on web interface and API in machine learning Book Description In over 20 years of existence, JavaScript has been pushing beyond the boundaries of web evolution with proven existence on servers, embedded devices, Smart TVs, IoT, Smart Cars, and more. Today, with the added advantage of machine learning research and support for JS libraries, JavaScript makes your browsers smarter than ever with the ability to learn patterns and reproduce them to become a part of innovative products and applications. Hands-on Machine Learning with JavaScript presents various avenues of machine learning in a practical and objective way, and helps implement them using the JavaScript language. Predicting behaviors, analyzing feelings, grouping data, and building neural models are some of the skills you will build from this book. You will learn how to train your machine learning models and work with different kinds of data. During this journey, you will come across use cases such as face detection, spam filtering, recommendation systems, character recognition, and more. Moreover, you will learn how to work with deep neural networks and guide your applications to gain insights from data. By the end of this book, you'll have gained hands-on knowledge on evaluating and implementing the right model, along with choosing from different JS libraries, such as NaturalNode, brain, harthur, classifier, and many more to design smarter applications. What you will learn Get an overview of state-of-the-art machine learning Understand the pre-processing of data handling, cleaning, and preparation Learn Mining and Pattern Extraction with JavaScript Build your own model for classification, clustering, and prediction Identify the most appropriate model for each type of problem Apply machine learning techniques to real-world applications Learn how JavaScript can be a powerful language for machine learning Who this book is for This book is for you if you are a JavaScript developer who wants to implement machine learning to make applications smarter, gain insightful information from the data, and enter the field of machine learning without switching to another language. Working knowledge of JavaScript language is expected to get the most out of the book.
Author | : Pete Warden |
Publisher | : O'Reilly Media |
Total Pages | : 504 |
Release | : 2019-12-16 |
Genre | : Computers |
ISBN | : 1492052019 |
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size