Handbook On Computer Learning And Intelligence (In 2 Volumes)

Handbook On Computer Learning And Intelligence (In 2 Volumes)
Author: Plamen Parvanov Angelov
Publisher: World Scientific
Total Pages: 1057
Release: 2022-06-29
Genre: Computers
ISBN: 9811247331

The Handbook on Computer Learning and Intelligence is a second edition which aims to be a one-stop-shop for the various aspects of the broad research area of computer learning and intelligence. This field of research evolved so much in the last five years that it necessitates this new edition of the earlier Handbook on Computational Intelligence.This two-volume handbook is divided into five parts. Volume 1 covers Explainable AI and Supervised Learning. Volume 2 covers three parts: Deep Learning, Intelligent Control, and Evolutionary Computation. The chapters detail the theory, methodology and applications of computer learning and intelligence, and are authored by some of the leading experts in the respective areas. The fifteen core chapters of the previous edition have been written and significantly refreshed by the same authors. Parts of the handbook have evolved to keep pace with the latest developments in computational intelligence in the areas that span across Machine Learning and Artificial Intelligence. The Handbook remains dedicated to applications and engineering-orientated aspects of these areas over abstract theories.Related Link(s)

Handbook of Research on Artificial Intelligence Techniques and Algorithms

Handbook of Research on Artificial Intelligence Techniques and Algorithms
Author: Vasant, Pandian
Publisher: IGI Global
Total Pages: 913
Release: 2014-11-30
Genre: Computers
ISBN: 1466672595

For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.

Handbook of Research on Computational Intelligence for Engineering, Science, and Business

Handbook of Research on Computational Intelligence for Engineering, Science, and Business
Author: Bhattacharyya, Siddhartha
Publisher: IGI Global
Total Pages: 535
Release: 2012-11-30
Genre: Computers
ISBN: 1466625198

Using the same strategy for the needs of image processing and pattern recognition, scientists and researchers have turned to computational intelligence for better research throughputs and end results applied towards engineering, science, business and financial applications. Handbook of Research on Computational Intelligence for Engineering, Science, and Business discusses the computation intelligence approaches, initiatives and applications in the engineering, science and business fields. This reference aims to highlight computational intelligence as no longer limited to computing-related disciplines and can be applied to any effort which handles complex and meaningful information.

Handbook of Computational Social Science, Volume 2

Handbook of Computational Social Science, Volume 2
Author: Uwe Engel
Publisher: Routledge
Total Pages: 477
Release: 2021-11-10
Genre: Computers
ISBN: 1000448622

The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital trace and textual data, as well as probability, non-probability, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry
Author: Chkoniya, Valentina
Publisher: IGI Global
Total Pages: 653
Release: 2021-06-25
Genre: Computers
ISBN: 1799869865

The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.

The Handbook of Artificial Intelligence

The Handbook of Artificial Intelligence
Author: Avron Barr
Publisher: Butterworth-Heinemann
Total Pages: 443
Release: 2014-05-12
Genre: Mathematics
ISBN: 1483214389

The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine and education, including ICAI systems design, intelligent CAI systems, medical systems, and other applications of AI to education. The manuscript explores automatic programming, as well as the methods of program specification, basic approaches, and automatic programming systems. The book is a valuable source of data for computer science experts and researchers interested in conducting further research in artificial intelligence.

Handbook On Computational Intelligence (In 2 Volumes)

Handbook On Computational Intelligence (In 2 Volumes)
Author: Plamen Parvanov Angelov
Publisher: World Scientific
Total Pages: 964
Release: 2016-03-18
Genre: Computers
ISBN: 9814675024

With the Internet, the proliferation of Big Data, and autonomous systems, mankind has entered into an era of 'digital obesity'. In this century, computational intelligence, such as thinking machines, have been brought forth to process complex human problems in a wide scope of areas — from social sciences, economics and biology, medicine and social networks, to cyber security.The Handbook of Computational Intelligence (in two volumes) prompts readers to look at these problems from a non-traditional angle. It takes a step by step approach, supported by case studies, to explore the issues that have arisen in the process. The Handbook covers many classic paradigms, as well as recent achievements and future promising developments to solve some of these very complex problems. Volume one explores the subjects of fuzzy logic and systems, artificial neural networks, and learning systems. Volume two delves into evolutionary computation, hybrid systems, as well as the applications of computational intelligence in decision making, the process industry, robotics, and autonomous systems.This work is a 'one-stop-shop' for beginners, as well as an inspirational source for more advanced researchers. It is a useful resource for lecturers and learners alike.

The Cambridge Handbook of Artificial Intelligence

The Cambridge Handbook of Artificial Intelligence
Author: Keith Frankish
Publisher: Cambridge University Press
Total Pages: 367
Release: 2014-06-12
Genre: Computers
ISBN: 0521871425

An authoritative, up-to-date survey of the state of the art in artificial intelligence, written for non-specialists.

Deep Learning

Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
Total Pages: 801
Release: 2016-11-10
Genre: Computers
ISBN: 0262337371

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Artificial Intelligence and Algorithms in Intelligent Systems

Artificial Intelligence and Algorithms in Intelligent Systems
Author: Radek Silhavy
Publisher: Springer
Total Pages: 515
Release: 2018-05-26
Genre: Technology & Engineering
ISBN: 3319911899

This book presents the latest trends and approaches in artificial intelligence research and its application to intelligent systems. It discusses hybridization of algorithms, new trends in neural networks, optimisation algorithms and real-life issues related to the application of artificial methods. The book constitutes the second volume of the refereed proceedings of the Artificial Intelligence and Algorithms in Intelligent Systems of the 7th Computer Science On-line Conference 2018 (CSOC 2018), held online in April 2018.