Healthcare Data Analytics

Healthcare Data Analytics
Author: Chandan K. Reddy
Publisher: CRC Press
Total Pages: 756
Release: 2015-06-23
Genre: Business & Economics
ISBN: 148223212X

At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available

Healthcare Interoperability Standards Compliance Handbook

Healthcare Interoperability Standards Compliance Handbook
Author: Frank Oemig
Publisher: Springer
Total Pages: 696
Release: 2016-12-18
Genre: Medical
ISBN: 3319448390

This book focuses on the development and use of interoperability standards related to healthcare information technology (HIT) and provides in-depth discussion of the associated essential aspects. The book explains the principles of conformance, examining how to improve the content of healthcare data exchange standards (including HL7 v2.x, V3/CDA, FHIR, CTS2, DICOM, EDIFACT, and ebXML), the rigor of conformance testing, and the interoperability capabilities of healthcare applications for the benefit of healthcare professionals who use HIT, developers of HIT applications, and healthcare consumers who aspire to be recipients of safe and effective health services facilitated through meaningful use of well-designed HIT. Readers will understand the common terms interoperability, conformance, compliance and compatibility, and be prepared to design and implement their own complex interoperable healthcare information system. Chapters address the practical aspects of the subject matter to enable application of previously theoretical concepts. The book provides real-world, concrete examples to explain how to apply the information, and includes many diagrams to illustrate relationships of entities and concepts described in the text. Designed for professionals and practitioners, this book is appropriate for implementers and developers of HIT, technical staff of information technology vendors participating in the development of standards and profiling initiatives, informatics professionals who design conformance testing tools, staff of information technology departments in healthcare institutions, and experts involved in standards development. Healthcare providers and leadership of provider organizations seeking a better understanding of conformance, interoperability, and IT certification processes will benefit from this book, as will students studying healthcare information technology.

R for Health Data Science

R for Health Data Science
Author: Ewen Harrison
Publisher: CRC Press
Total Pages: 354
Release: 2020-12-31
Genre: Medical
ISBN: 1000226166

In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.

Healthcare Analytics Made Simple

Healthcare Analytics Made Simple
Author: Vikas (Vik) Kumar
Publisher: Packt Publishing Ltd
Total Pages: 258
Release: 2018-07-31
Genre: Computers
ISBN: 1787283224

Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.

Handbook of Research on Data Science for Effective Healthcare Practice and Administration

Handbook of Research on Data Science for Effective Healthcare Practice and Administration
Author: Noughabi, Elham Akhond Zadeh
Publisher: IGI Global
Total Pages: 574
Release: 2017-07-20
Genre: Computers
ISBN: 1522525165

Data science has always been an effective way of extracting knowledge and insights from information in various forms. One industry that can utilize the benefits from the advances in data science is the healthcare field. The Handbook of Research on Data Science for Effective Healthcare Practice and Administration is a critical reference source that overviews the state of data analysis as it relates to current practices in the health sciences field. Covering innovative topics such as linear programming, simulation modeling, network theory, and predictive analytics, this publication is recommended for all healthcare professionals, graduate students, engineers, and researchers that are seeking to expand their knowledge of efficient techniques for information analysis in the healthcare professions.

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning
Author: Rani, Geeta
Publisher: IGI Global
Total Pages: 586
Release: 2020-10-16
Genre: Medical
ISBN: 1799827437

By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.

Handbook of Healthcare Analytics

Handbook of Healthcare Analytics
Author: Tinglong Dai
Publisher: John Wiley & Sons
Total Pages: 496
Release: 2018-07-30
Genre: Business & Economics
ISBN: 1119300967

How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.

Handbook on Intelligent Healthcare Analytics

Handbook on Intelligent Healthcare Analytics
Author: A. Jaya
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2022-05-09
Genre: Technology & Engineering
ISBN: 1119792533

HANDBOOK OF INTELLIGENT HEALTHCARE ANALYTICS The book explores the various recent tools and techniques used for deriving knowledge from healthcare data analytics for researchers and practitioners. The power of healthcare data analytics is being increasingly used in the industry. Advanced analytics techniques are used against large data sets to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information. A Handbook on Intelligent Healthcare Analytics covers both the theory and application of the tools, techniques, and algorithms for use in big data in healthcare and clinical research. It provides the most recent research findings to derive knowledge using big data analytics, which helps to analyze huge amounts of real-time healthcare data, the analysis of which can provide further insights in terms of procedural, technical, medical, and other types of improvements in healthcare. In addition, the reader will find in this Handbook: Innovative hybrid machine learning and deep learning techniques applied in various healthcare data sets, as well as various kinds of machine learning algorithms existing such as supervised, unsupervised, semi-supervised, reinforcement learning, and guides how readers can implement the Python environment for machine learning; An exploration of predictive analytics in healthcare; The various challenges for smart healthcare, including privacy, confidentiality, authenticity, loss of information, attacks, etc., that create a new burden for providers to maintain compliance with healthcare data security. In addition, this book also explores various sources of personalized healthcare data and the commercial platforms for healthcare data analytics. Audience Healthcare professionals, researchers, and practitioners who wish to figure out the core concepts of smart healthcare applications and the innovative methods and technologies used in healthcare will all benefit from this book.

Complimentary Handbook of Health/Nursing Informatics and Technology_1e - E-Book

Complimentary Handbook of Health/Nursing Informatics and Technology_1e - E-Book
Author: Prakash Palanivelu
Publisher: Elsevier Health Sciences
Total Pages: 209
Release: 2023-07-20
Genre: Medical
ISBN: 8131268217

Handbook of Health/Nursing Informatics and Technology is written based on the revised IndianNursing Council (INC) syllabus. This book is supplemented with diagrammatic presentations, flowcharts, key points in the boxes and tables. Each chapter's text is provided with diagrams wherever felt essential to explain the text.Salient Features• Chapter outline in each chapter provides summary of the contents discussed within the chapter• Content contributed from Nurses (professors at nursing colleges and bedside nurses), computerprofessionals ensures the quality of provided text• Annexures such as keyboard Short cut keys, Flowcharts (denoting the sequence of steps in computer usage) and Practical usage of hospital information system or health information system might help the teachers to teach the subject effectivelyDigital Resources• eBook• Section wise powerpoint slides• Videos for some important chapters

Handbook of Healthcare Analytics

Handbook of Healthcare Analytics
Author: Tinglong Dai
Publisher: John Wiley & Sons
Total Pages: 482
Release: 2018-10-16
Genre: Business & Economics
ISBN: 1119300940

How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.