Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics
Author: Miklos Bona
Publisher: CRC Press
Total Pages: 1073
Release: 2015-03-24
Genre: Mathematics
ISBN: 1482220865

Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he

Introduction to Enumerative and Analytic Combinatorics

Introduction to Enumerative and Analytic Combinatorics
Author: Miklos Bona
Publisher: CRC Press
Total Pages: 555
Release: 2015-09-18
Genre: Computers
ISBN: 1482249103

Introduction to Enumerative and Analytic Combinatorics fills the gap between introductory texts in discrete mathematics and advanced graduate texts in enumerative combinatorics. The book first deals with basic counting principles, compositions and partitions, and generating functions. It then focuses on the structure of permutations, graph enumerat

A Course in Enumeration

A Course in Enumeration
Author: Martin Aigner
Publisher: Springer Science & Business Media
Total Pages: 568
Release: 2007-06-28
Genre: Mathematics
ISBN: 3540390359

Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from basic notions of combinatorial enumeration to a variety of topics, ranging from algebra to statistical physics. The book is organized in three parts: Basics, Methods, and Topics. The aim is to introduce readers to a fascinating field, and to offer a sophisticated source of information for professional mathematicians desiring to learn more. There are 666 exercises, and every chapter ends with a highlight section, discussing in detail a particularly beautiful or famous result.

Combinatorics: The Art of Counting

Combinatorics: The Art of Counting
Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
Total Pages: 304
Release: 2020-10-16
Genre: Education
ISBN: 1470460327

This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.

Algebraic Combinatorics

Algebraic Combinatorics
Author: Richard P. Stanley
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 2013-06-17
Genre: Mathematics
ISBN: 1461469988

Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

Analytic Combinatorics in Several Variables

Analytic Combinatorics in Several Variables
Author: Robin Pemantle
Publisher: Cambridge University Press
Total Pages: 395
Release: 2013-05-31
Genre: Mathematics
ISBN: 1107031575

Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.

Patterns in Permutations and Words

Patterns in Permutations and Words
Author: Sergey Kitaev
Publisher: Springer Science & Business Media
Total Pages: 511
Release: 2011-08-30
Genre: Computers
ISBN: 3642173330

There has been considerable interest recently in the subject of patterns in permutations and words, a new branch of combinatorics with its roots in the works of Rotem, Rogers, and Knuth in the 1970s. Consideration of the patterns in question has been extremely interesting from the combinatorial point of view, and it has proved to be a useful language in a variety of seemingly unrelated problems, including the theory of Kazhdan—Lusztig polynomials, singularities of Schubert varieties, interval orders, Chebyshev polynomials, models in statistical mechanics, and various sorting algorithms, including sorting stacks and sortable permutations. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.

Introductory Combinatorics

Introductory Combinatorics
Author: Kenneth P. Bogart
Publisher: Harcourt Brace College Publishers
Total Pages: 648
Release: 1990
Genre: Computers
ISBN:

Introductory, Combinatorics, Third Edition is designed for introductory courses in combinatorics, or more generally, discrete mathematics. The author, Kenneth Bogart, has chosen core material of value to students in a wide variety of disciplines: mathematics, computer science, statistics, operations research, physical sciences, and behavioral sciences. The rapid growth in the breadth and depth of the field of combinatorics in the last several decades, first in graph theory and designs and more recently in enumeration and ordered sets, has led to a recognition of combinatorics as a field with which the aspiring mathematician should become familiar. This long-overdue new edition of a popular set presents a broad comprehensive survey of modern combinatorics which is important to the various scientific fields of study.

Walk Through Combinatorics, A: An Introduction To Enumeration And Graph Theory (Third Edition)

Walk Through Combinatorics, A: An Introduction To Enumeration And Graph Theory (Third Edition)
Author: Miklos Bona
Publisher: World Scientific Publishing Company
Total Pages: 567
Release: 2011-05-09
Genre: Mathematics
ISBN: 9813100729

This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first two editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs (new to this edition), enumeration under group action (new to this edition), generating functions of labeled and unlabeled structures and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected].