Handbook Of Categorical Algebra 2
Download Handbook Of Categorical Algebra 2 full books in PDF, epub, and Kindle. Read online free Handbook Of Categorical Algebra 2 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Francis Borceux |
Publisher | : Cambridge University Press |
Total Pages | : 0 |
Release | : 1994-11-03 |
Genre | : Mathematics |
ISBN | : 9780521441797 |
The second volume, which assumes familiarity with the material in the first, introduces important classes of categories that have played a fundamental role in the subject's development and applications. In addition, after several chapters discussing specific categories, the book develops all the major concepts concerning Benabou's ideas of fibered categories.
Author | : Francis Borceux |
Publisher | : Cambridge University Press |
Total Pages | : 363 |
Release | : 1994-08-26 |
Genre | : Mathematics |
ISBN | : 0521441781 |
The Handbook of Categorical Algebra is designed to give, in three volumes, a detailed account of what should be known by everybody working in, or using, category theory. As such it will be a unique reference. The volumes are written in sequence, with the first being essentially self-contained, and are accessible to graduate students with a good background in mathematics. In particular, Volume 1, which is devoted to general concepts, can be used for advanced undergraduate courses on category theory.
Author | : Tom Leinster |
Publisher | : Cambridge University Press |
Total Pages | : 193 |
Release | : 2014-07-24 |
Genre | : Mathematics |
ISBN | : 1107044243 |
A short introduction ideal for students learning category theory for the first time.
Author | : Francis Borceux |
Publisher | : |
Total Pages | : 472 |
Release | : 1994 |
Genre | : Abelian categories |
ISBN | : |
Author | : Saunders Mac Lane |
Publisher | : Springer Science & Business Media |
Total Pages | : 320 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475747217 |
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Author | : Francis Borceux |
Publisher | : |
Total Pages | : |
Release | : 1994 |
Genre | : Categories (Mathematics) |
ISBN | : |
Author | : Francis Borceux |
Publisher | : Cambridge University Press |
Total Pages | : 470 |
Release | : 1994-11-03 |
Genre | : Mathematics |
ISBN | : 052144179X |
The Handbook of Categorical Algebra is designed to give, in three volumes, a detailed account of what should be known by everybody working in, or using, category theory. As such it will be a unique reference. The volumes are written in sequence. The second, which assumes familiarity with the material in the first, introduces important classes of categories that have played a fundamental role in the subject's development and applications. In addition, after several chapters discussing specific categories, the book develops all the major concepts concerning Benabou's ideas of fibred categories. There is ample material here for a graduate course in category theory, and the book should also serve as a reference for users.
Author | : M. Hazewinkel |
Publisher | : Elsevier |
Total Pages | : 543 |
Release | : 2006-05-30 |
Genre | : Mathematics |
ISBN | : 0080462499 |
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source for information- Provides in-depth coverage of new topics in algebra- Includes references to relevant articles, books and lecture notes
Author | : Emily Riehl |
Publisher | : Cambridge University Press |
Total Pages | : 371 |
Release | : 2014-05-26 |
Genre | : Mathematics |
ISBN | : 1139952633 |
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Author | : Emily Riehl |
Publisher | : Courier Dover Publications |
Total Pages | : 273 |
Release | : 2017-03-09 |
Genre | : Mathematics |
ISBN | : 0486820807 |
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.