Gustavo Rosa

Gustavo Rosa
Author: Gustavo Rosa
Publisher: Editora Decor-Arte e Cultura
Total Pages: 322
Release: 2007*
Genre:
ISBN: 8599742086

Optimum-Path Forest

Optimum-Path Forest
Author: Alexandre Xavier Falcao
Publisher: Academic Press
Total Pages: 246
Release: 2022-01-06
Genre: Computers
ISBN: 0128226897

The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification. Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. In recent years, multi-label and semi-supervised versions were also developed to handle video classification problems. The book presents the principles, algorithms and applications of Optimum-Path Forest, giving the theory and state-of-the-art as well as insights into future directions. - Presents the first book on Optimum-path Forest - Shows how it can be used with Deep Learning - Gives a wide range of applications - Includes the methods, underlying theory and applications of Optimum-Path Forest (OPF)

Deep Neural Evolution

Deep Neural Evolution
Author: Hitoshi Iba
Publisher: Springer Nature
Total Pages: 437
Release: 2020-05-20
Genre: Computers
ISBN: 9811536856

This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL. EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research —from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN). This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
Author: João Manuel R. S. Tavares
Publisher: Springer Nature
Total Pages: 493
Release: 2022-01-13
Genre: Computers
ISBN: 3030934209

This book constitutes the proceedings of the 25th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2021, which took place during May 10–13, 2021. The conference was initially planned to take place in Porto, Portugal, but changed to a virtual event due to the COVID-19 pandemic. The 45 papers presented in this volume were carefully reviewed and selected from 82 submissions. They were organized in topical sections as follows: medical applications; natural language processing; metaheuristics; image segmentation; databases; deep learning; explainable artificial intelligence; image processing; machine learning; and computer vision.

Intelligent Systems

Intelligent Systems
Author: João Carlos Xavier-Junior
Publisher: Springer Nature
Total Pages: 686
Release: 2022-11-18
Genre: Computers
ISBN: 303121689X

The two-volume set LNAI 13653 and 13654 constitutes the refereed proceedings of the 11th Brazilian Conference on Intelligent Systems, BRACIS 2022, which took place in Campinas, Brazil, in November/December 2022. The 89 papers presented in the proceedings were carefully reviewed and selected from 225 submissions. The conference deals with theoretical aspects and applications of artificial and computational intelligence.