Guide To Simulation And Modeling For Biosciences
Download Guide To Simulation And Modeling For Biosciences full books in PDF, epub, and Kindle. Read online free Guide To Simulation And Modeling For Biosciences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David J. Barnes |
Publisher | : Springer |
Total Pages | : 347 |
Release | : 2015-09-01 |
Genre | : Computers |
ISBN | : 1447167627 |
This accessible text presents a detailed introduction to the use of a wide range of software tools and modeling environments for use in the biosciences, as well as the fundamental mathematical background. The practical constraints presented by each modeling technique are described in detail, enabling the researcher to determine which software package would be most useful for a particular problem. Features: introduces a basic array of techniques to formulate models of biological systems, and to solve them; discusses agent-based models, stochastic modeling techniques, differential equations, spatial simulations, and Gillespie’s stochastic simulation algorithm; provides exercises; describes such useful tools as the Maxima algebra system, the PRISM model checker, and the modeling environments Repast Simphony and Smoldyn; contains appendices on rules of differentiation and integration, Maxima and PRISM notation, and some additional mathematical concepts; offers supplementary material at an associated website.
Author | : David J. Barnes |
Publisher | : Springer Science & Business Media |
Total Pages | : 328 |
Release | : 2010-07-23 |
Genre | : Computers |
ISBN | : 1849963266 |
Mathematical modeling can be a useful tool for researchers in the biological scientists. Yet in biological modeling there is no one modeling technique that is suitable for all problems. Instead, different problems call for different approaches. Furthermore, it can be helpful to analyze the same system using a variety of approaches, to be able to exploit the advantages and drawbacks of each. In practice, it is often unclear which modeling approaches will be most suitable for a particular biological question, a problem which requires researchers to know a reasonable amount about a number of techniques, rather than become experts on a single one. "Introduction to Modeling for Biosciences" addresses this issue by presenting a broad overview of the most important techniques used to model biological systems. In addition to providing an introduction into the use of a wide range of software tools and modeling environments, this helpful text/reference describes the constraints and difficulties that each modeling technique presents in practice, enabling the researcher to quickly determine which software package would be most useful for their particular problem. Topics and features: introduces a basic array of techniques to formulate models of biological systems, and to solve them; intersperses the text with exercises throughout the book; includes practical introductions to the Maxima computer algebra system, the PRISM model checker, and the Repast Simphony agent modeling environment; discusses agent-based models, stochastic modeling techniques, differential equations and Gillespie’s stochastic simulation algorithm; contains appendices on Repast batch running, rules of differentiation and integration, Maxima and PRISM notation, and some additional mathematical concepts; supplies source code for many of the example models discussed, at the associated website http://www.cs.kent.ac.uk/imb/. This unique and practical guide leads the novice modeler through realistic and concrete modeling projects, highlighting and commenting on the process of abstracting the real system into a model. Students and active researchers in the biosciences will also benefit from the discussions of the high-quality, tried-and-tested modeling tools described in the book. Dr. David J. Barnes is a lecturer in computer science at the University of Kent, UK, with a strong background in the teaching of programming. Dr. Dominique Chu is a lecturer in computer science at the University of Kent, UK. He is an internationally recognized expert in agent-based modeling, and has also in-depth research experience in stochastic and differential equation based modeling.
Author | : Sarah P. Otto |
Publisher | : Princeton University Press |
Total Pages | : 745 |
Release | : 2011-09-19 |
Genre | : Science |
ISBN | : 1400840910 |
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Author | : Alan Garfinkel |
Publisher | : Springer |
Total Pages | : 456 |
Release | : 2017-09-06 |
Genre | : Mathematics |
ISBN | : 3319597310 |
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Author | : Mamadou Kaba Traore |
Publisher | : Elsevier |
Total Pages | : 138 |
Release | : 2017-07-07 |
Genre | : Computers |
ISBN | : 0081023162 |
Computational Frameworks: Systems, Models and Applications provides an overview of advanced perspectives that bridges the gap between frontline research and practical efforts. It is unique in showing the interdisciplinary nature of this area and the way in which it interacts with emerging technologies and techniques. As computational systems are a dominating part of daily lives and a required support for most of the engineering sciences, this book explores their usage (e.g. big data, high performance clusters, databases and information systems, integrated and embedded hardware/software components, smart devices, mobile and pervasive networks, cyber physical systems, etc.). - Provides a unique presentation on the views of frontline researchers on computational systems theory and applications in one holistic scope - Cover both computational science and engineering - Bridges the gap between frontline research and practical efforts
Author | : |
Publisher | : BoD – Books on Demand |
Total Pages | : 130 |
Release | : 2019-12-04 |
Genre | : Computers |
ISBN | : 178984536X |
Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence.
Author | : Tamar Schlick |
Publisher | : Springer Science & Business Media |
Total Pages | : 669 |
Release | : 2013-04-18 |
Genre | : Science |
ISBN | : 0387224645 |
Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text
Author | : Joshua S. Weitz |
Publisher | : Princeton University Press |
Total Pages | : 273 |
Release | : 2024-01-09 |
Genre | : Science |
ISBN | : 0691259607 |
A hands-on lab guide in the R programming language that enables students in the life sciences to reason quantitatively about living systems across scales This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty. Draws on real-world case studies in molecular and cellular biosciences, organismal behavior and physiology, and populations and ecological communities Encourages good coding practices, clear and understandable modeling, and accessible presentation of results Helps students to develop a diverse repertoire of simulation approaches, enabling them to model at the appropriate scale Builds practical expertise in a range of methods, including sampling from probability distributions, stochastic branching processes, continuous time modeling, Markov chains, bifurcation analysis, partial differential equations, and agent-based simulations Bridges the gap between the classroom and research discovery, helping students to think independently, troubleshoot and resolve problems, and embark on research of their own Stand-alone computational lab guides for Quantitative Biosciences also available in Python and MATLAB
Author | : Raquell M. Holmes |
Publisher | : John Wiley & Sons |
Total Pages | : 224 |
Release | : 2008-02-13 |
Genre | : Science |
ISBN | : 9780470139349 |
A step-by-step guide to using computational tools to solve problems in cell biology Combining expert discussion with examples that can be reproduced by the reader, A Cell Biologist's Guide to Modeling and Bioinformatics introduces an array of informatics tools that are available for analyzing biological data and modeling cellular processes. You learn to fully leverage public databases and create your own computational models. All that you need is a working knowledge of algebra and cellular biology; the author provides all the other tools you need to understand the necessary statistical and mathematical methods. Coverage is divided into two main categories: Molecular sequence database chapters are dedicated to gaining an understanding of tools and strategies—including queries, alignment methods, and statistical significance measures—needed to improve searches for sequence similarity, protein families, and putative functional domains. Discussions of sequence alignments and biological database searching focus on publicly available resources used for background research and the characterization of novel gene products. Modeling chapters take you through all the steps involved in creating a computational model for such basic research areas as cell cycle, calcium dynamics, and glycolysis. Each chapter introduces a new simulation tooland is based on published research. The combination creates a rich context for ongoing skill and knowledge development in modeling biological research systems. Students and professional cell biologists can develop the basic skills needed to learn computational cell biology. This unique text, with its step-by-step instruction, enables you to test and develop your new bioinformatics and modeling skills. References are provided to help you take advantage of more advanced techniques, technologies, and training.
Author | : Joshua S. Weitz |
Publisher | : Princeton University Press |
Total Pages | : 272 |
Release | : 2024-03-05 |
Genre | : Computers |
ISBN | : 0691255679 |
A hands-on lab guide in the Python programming language that enables students in the life sciences to reason quantitatively about living systems across scales This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty. Draws on real-world case studies in molecular and cellular biosciences, organismal behavior and physiology, and populations and ecological communities Encourages good coding practices, clear and understandable modeling, and accessible presentation of results Helps students to develop a diverse repertoire of simulation approaches, enabling them to model at the appropriate scale Builds practical expertise in a range of methods, including sampling from probability distributions, stochastic branching processes, continuous time modeling, Markov chains, bifurcation analysis, partial differential equations, and agent-based simulations Bridges the gap between the classroom and research discovery, helping students to think independently, troubleshoot and resolve problems, and embark on research of their own Stand-alone computational lab guides for Quantitative Biosciences also available in R and MATLAB