Groups And Characters
Download Groups And Characters full books in PDF, epub, and Kindle. Read online free Groups And Characters ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Victor E Hill |
Publisher | : CRC Press |
Total Pages | : 264 |
Release | : 1999-11-22 |
Genre | : Mathematics |
ISBN | : 9781584880387 |
Group representation theory is both elegant and practical, with important applications to quantum mechanics, spectroscopy, crystallography, and other fields in the physical sciences. Until now, however, there have been virtually no accessible treatments of group theory that include representations and characters. The classic works in the field require a high level of mathematical sophistication, and other texts omit representations and characters. Groups and Characters offers an easy-to-follow introduction to the theory of groups and of group characters. Designed as a rapid survey of the subject, this unique text emphasizes examples and applications of the theorems, and avoids many of the longer and more difficult proofs. The author presents group theory through the Sylow Theorems and includes the full subgroup structure of A5. Representations and characters are worked out with numerous character tables, along with real and induced characters that lead to the table for S5. The text includes specific sections that provide the mathematical basis for some of the important applications of group theory in spectroscopy and molecular structure. It also offers numerous exercises-some stressing computation of concrete examples, others stressing development of the mathematical theory. Groups and Characters provides the ideal grounding for more advanced studies with the classic texts, and for more broad-based work in abstract algebra. Furthermore, physical scientists-whose experience with groups and characters may not be rigorous-will find Groups and Characters the ideal means for gaining a sense of the mathematics lying behind the techniques used in applications.
Author | : Gordon James |
Publisher | : Cambridge University Press |
Total Pages | : 436 |
Release | : 2001-10-18 |
Genre | : Mathematics |
ISBN | : 1139811053 |
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.
Author | : I. Martin Isaacs |
Publisher | : American Mathematical Soc. |
Total Pages | : 384 |
Release | : 2018-05-23 |
Genre | : Mathematics |
ISBN | : 1470434857 |
This book, which can be considered as a sequel of the author's famous book Character Theory of Finite Groups, concerns the character theory of finite solvable groups and other groups that have an abundance of normal subgroups. It is subdivided into three parts: -theory, character correspondences, and M-groups. The -theory section contains an exposition of D. Gajendragadkar's -special characters, and it includes various extensions, generalizations, and applications of his work. The character correspondences section proves the McKay character counting conjecture and the Alperin weight conjecture for solvable groups, and it constructs a canonical McKay bijection for odd-order groups. In addition to a review of some basic material on M-groups, the third section contains an exposition of the use of symplectic modules for studying M-groups. In particular, an accessible presentation of E. C. Dade's deep results on monomial characters of odd prime-power degree is included. Very little of this material has previously appeared in book form, and much of it is based on the author's research. By reading a clean and accessible presentation written by the leading expert in the field, researchers and graduate students will be inspired to learn and work in this area that has fascinated the author for decades.
Author | : Dudley Ernest Littlewood |
Publisher | : American Mathematical Soc. |
Total Pages | : 322 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 0821840673 |
Originally written in 1940, this book remains a classical source on representations and characters of finite and compact groups. The book starts with necessary information about matrices, algebras, and groups. Then the author proceeds to representations of finite groups. Of particular interest in this part of the book are several chapters devoted to representations and characters of symmetric groups and the closely related theory of symmetric polynomials. The concluding chapters present the representation theory of classical compact Lie groups, including a detailed description of representations of the unitary and orthogonal groups. The book, which can be read with minimal prerequisites (an undergraduate algebra course), allows the reader to get a good understanding of beautiful classical results about group representations.
Author | : I. Martin Isaacs |
Publisher | : American Mathematical Soc. |
Total Pages | : 322 |
Release | : 2006-11-21 |
Genre | : Mathematics |
ISBN | : 0821842293 |
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.
Author | : Meinolf Geck |
Publisher | : Cambridge University Press |
Total Pages | : 406 |
Release | : 2020-02-27 |
Genre | : Mathematics |
ISBN | : 1108808905 |
Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
Author | : Bertram Huppert |
Publisher | : Walter de Gruyter |
Total Pages | : 625 |
Release | : 2011-04-20 |
Genre | : Mathematics |
ISBN | : 3110809230 |
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Author | : Gabriel Navarro |
Publisher | : Cambridge University Press |
Total Pages | : 301 |
Release | : 1998-05-07 |
Genre | : Mathematics |
ISBN | : 0521595134 |
This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. After a short review of the necessary background material, the early chapters introduce Brauer characters and blocks and develop their basic properties. The next three chapters study and prove Brauer's first, second and third main theorems in turn. These results are then applied to prove a major application of finite groups, the Glauberman Z*-theorem. Later chapters examine Brauer characters in more detail. The relationship between blocks and normal subgroups is also explored and the modular characters and blocks in p-solvable groups are discussed. Finally, the character theory of groups with a Sylow p-subgroup of order p is studied. Each chapter concludes with a set of problems. The book is aimed at graduate students, with some previous knowledge of ordinary character theory, and researchers studying the representation theory of finite groups.
Author | : M. J. Collins |
Publisher | : Cambridge University Press |
Total Pages | : 260 |
Release | : 1990-03-22 |
Genre | : Mathematics |
ISBN | : 9780521234405 |
Representation theory and character theory have proved essential in the study of finite simple groups since their early development by Frobenius. The author begins by presenting the foundations of character theory in a style accessible to advanced undergraduates that requires only a basic knowledge of group theory and general algebra. This theme is then expanded in a self-contained account providing an introduction to the application of character theory to the classification of simple groups. The book follows both strands of the theory: the exceptional characteristics of Suzuki and Feit and the block character theory of Brauer and includes refinements of original proofs that have become available as the subject has grown.
Author | : Bachir Bekka |
Publisher | : American Mathematical Soc. |
Total Pages | : 489 |
Release | : 2020-11-16 |
Genre | : Education |
ISBN | : 1470456273 |
Unitary representations of groups play an important role in many subjects, including number theory, geometry, probability theory, partial differential equations, and quantum mechanics. This monograph focuses on dual spaces associated to a group, which are spaces of building blocks of general unitary representations. Special attention is paid to discrete groups for which the unitary dual, the most common dual space, has proven to be not useful in general and for which other duals spaces have to be considered, such as the primitive dual, the normal quasi-dual, or spaces of characters. The book offers a detailed exposition of these alternative dual spaces and covers the basic facts about unitary representations and operator algebras needed for their study. Complete and elementary proofs are provided for most of the fundamental results that up to now have been accessible only in original papers and appear here for the first time in textbook form. A special feature of this monograph is that the theory is systematically illustrated by a family of examples of discrete groups for which the various dual spaces are discussed in great detail: infinite dihedral group, Heisenberg groups, affine groups of fields, solvable Baumslag-Solitar group, lamplighter group, and general and special linear groups. The book will appeal to graduate students who wish to learn the basics facts of an important topic and provides a useful resource for researchers from a variety of areas. The only prerequisites are a basic background in group theory, measure theory, and operator algebras.