Grobner Bases And Convex Polytopes
Download Grobner Bases And Convex Polytopes full books in PDF, epub, and Kindle. Read online free Grobner Bases And Convex Polytopes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bernd Sturmfels |
Publisher | : American Mathematical Soc. |
Total Pages | : 176 |
Release | : 1996 |
Genre | : Mathematics |
ISBN | : 0821804871 |
This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centres around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.
Author | : Takayuki Hibi |
Publisher | : Springer Science & Business Media |
Total Pages | : 488 |
Release | : 2014-01-07 |
Genre | : Mathematics |
ISBN | : 4431545743 |
The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels. This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points. Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems.
Author | : Takayuki Hibi |
Publisher | : World Scientific |
Total Pages | : 385 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 9814383465 |
This volume consists of research papers and expository survey articles presented by the invited speakers of the conference on OC Harmony of GrAbner Bases and the Modern Industrial SocietyOCO. Topics include computational commutative algebra, algebraic statistics, algorithms of D-modules and combinatorics. This volume also provides current trends on GrAbner bases and will stimulate further development of many research areas surrounding GrAbner bases."
Author | : Takayuki Hibi |
Publisher | : World Scientific |
Total Pages | : 385 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 9814383457 |
This volume consists of research papers and expository survey articles presented by the invited speakers of the conference on "Harmony of Grobner Bases and the Modern Industrial Society." Topics include computational commutative algebra, algebraic statistics, algorithms of D-modules and combinatorics. This volume also provides current trends on Grobner bases and will stimulate further development of many research areas surrounding Gr bner bases. Contents: Polyhedral Approach to Statistical Learning Graphical Models; Implementation of a Primary Decomposition Package; Computing Tropical Resultants; Running Markov Chain Without Markov Basis; Incomplete A-Hypergeometric Systems; Degree Bounds for a Minimal Markov Basis for the Three-State Toric Homogeneous Markov Chain Model.
Author | : Takayuki Hibi |
Publisher | : World Scientific |
Total Pages | : 385 |
Release | : 2012-03-21 |
Genre | : Mathematics |
ISBN | : 9814452947 |
This volume consists of research papers and expository survey articles presented by the invited speakers of the conference on “Harmony of Gröbner Bases and the Modern Industrial Society”. Topics include computational commutative algebra, algebraic statistics, algorithms of D-modules and combinatorics. This volume also provides current trends on Gröbner bases and will stimulate further development of many research areas surrounding Gröbner bases./a
Author | : Bruno Buchberger |
Publisher | : Cambridge University Press |
Total Pages | : 566 |
Release | : 1998-02-26 |
Genre | : Mathematics |
ISBN | : 9780521632980 |
Comprehensive account of theory and applications of Gröbner bases, co-edited by the subject's inventor.
Author | : Jürgen Herzog |
Publisher | : Springer |
Total Pages | : 332 |
Release | : 2018-09-28 |
Genre | : Mathematics |
ISBN | : 3319953494 |
This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals. In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics. The book begins with a brief, self-contained overview of the modern theory of Gröbner bases and the necessary algebraic and homological concepts from commutative algebra. Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes. Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics. Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented. Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics. Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.
Author | : Winfried Bruns |
Publisher | : Springer Nature |
Total Pages | : 514 |
Release | : 2022-12-02 |
Genre | : Mathematics |
ISBN | : 3031054806 |
This book offers an up-to-date, comprehensive account of determinantal rings and varieties, presenting a multitude of methods used in their study, with tools from combinatorics, algebra, representation theory and geometry. After a concise introduction to Gröbner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinson–Schensted–Knuth correspondence, which provide a description of the Gröbner bases of determinantal ideals, yielding homological and enumerative theorems on determinantal rings. Sagbi bases then lead to the introduction of toric methods. In positive characteristic, the Frobenius functor is used to study properties of singularities, such as F-regularity and F-rationality. Castelnuovo–Mumford regularity, an important complexity measure in commutative algebra and algebraic geometry, is introduced in the general setting of a Noetherian base ring and then applied to powers and products of ideals. The remainder of the book focuses on algebraic geometry, where general vanishing results for the cohomology of line bundles on flag varieties are presented and used to obtain asymptotic values of the regularity of symbolic powers of determinantal ideals. In characteristic zero, the Borel–Weil–Bott theorem provides sharper results for GL-invariant ideals. The book concludes with a computation of cohomology with support in determinantal ideals and a survey of their free resolutions. Determinants, Gröbner Bases and Cohomology provides a unique reference for the theory of determinantal ideals and varieties, as well as an introduction to the beautiful mathematics developed in their study. Accessible to graduate students with basic grounding in commutative algebra and algebraic geometry, it can be used alongside general texts to illustrate the theory with a particularly interesting and important class of varieties.
Author | : Viviana Ene |
Publisher | : American Mathematical Soc. |
Total Pages | : 178 |
Release | : 2011-12-01 |
Genre | : Mathematics |
ISBN | : 0821872877 |
This book provides a concise yet comprehensive and self-contained introduction to Grobner basis theory and its applications to various current research topics in commutative algebra. It especially aims to help young researchers become acquainted with fundamental tools and techniques related to Grobner bases which are used in commutative algebra and to arouse their interest in exploring further topics such as toric rings, Koszul and Rees algebras, determinantal ideal theory, binomial edge ideals, and their applications to statistics. The book can be used for graduate courses and self-study. More than 100 problems will help the readers to better understand the main theoretical results and will inspire them to further investigate the topics studied in this book.
Author | : Rekha R. Thomas |
Publisher | : American Mathematical Soc. |
Total Pages | : 156 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9780821841402 |
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the statepolytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Grobner bases of toric ideals and other methods fromcommutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.