Green's Functions with Applications

Green's Functions with Applications
Author: Dean G. Duffy
Publisher: CRC Press
Total Pages: 685
Release: 2015-03-10
Genre: Mathematics
ISBN: 1482251035

Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then presents Green’s functions for each class of differential equation (ordinary differential, wave, heat, and Helmholtz equations) according to the number of spatial dimensions and the geometry of the domain. Detailing step-by-step methods for finding and computing Green’s functions, each chapter contains a special section devoted to topics where Green’s functions particularly are useful. For example, in the case of the wave equation, Green’s functions are beneficial in describing diffraction and waves. To aid readers in developing practical skills for finding Green’s functions, worked examples, problem sets, and illustrations from acoustics, applied mechanics, antennas, and the stability of fluids and plasmas are featured throughout the text. A new chapter on numerical methods closes the book. Included solutions and hundreds of references to the literature on the construction and use of Green's functions make Green’s Functions with Applications, Second Edition a valuable sourcebook for practitioners as well as graduate students in the sciences and engineering.

Green’s Functions in Quantum Physics

Green’s Functions in Quantum Physics
Author: Eleftherios N. Economou
Publisher: Springer Science & Business Media
Total Pages: 325
Release: 2013-03-14
Genre: Science
ISBN: 3662023695

In this edition the second and main part of the book has been considerably expanded as to cover important applications of the formalism. In Chap.5 a section was added outlining the extensive role of the tight binding (or equivalently the linear combination of atomic-like orbitals) approach to many branches of solid-state physics. Some additional informa tion (including a table of numerical values) regarding square and cubic lattice Green's functions were incorporated. In Chap.6 the difficult subjects of superconductivity and the Kondo effect are examined by employing an appealingly simple connection to the question of the existence of a bound state in a very shallow potential well. The existence of such a bound state depends entirely on the form of the un perturbed density of states near the end of the spectrum: if the density of states blows up there is always at least one bound state. If the density of states approaches zero continuously, a critical depth (and/or width) of the well must be reached in order to have a bound state. The borderline case of a finite discontinuity (which is very important to superconductivity and the Kondo effect) always produces a bound state with an exponentially small binding energy.

Green's Functions and Linear Differential Equations

Green's Functions and Linear Differential Equations
Author: Prem K. Kythe
Publisher: CRC Press
Total Pages: 376
Release: 2011-01-21
Genre: Mathematics
ISBN: 1439840091

Green's Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green's function method, which is used to solve initial and boundary

Advances in Surface Acoustic Wave Technology, Systems and Applications

Advances in Surface Acoustic Wave Technology, Systems and Applications
Author: Clemens C. W. Ruppel
Publisher: World Scientific
Total Pages: 380
Release: 2001
Genre: Science
ISBN: 9789812811561

Surface acoustic wave (SAW) devices are recognized for their versatility and efficiency in controlling and processing electrical signals. This has resulted in a multitude of device concepts for a wide range of signal processing functions, such as delay lines, filters, resonators, pulse compressors, convolvers, and many more. As SAW technology has found its way into mass market products such as TV receivers, pagers, keyless entry systems and cellular phones, the production volume has risen to millions of devices produced every day. At the other end of the scale, these are specialized high performance signal processing SAW devices for satellite communication and military applications, such as radar and electronic warfare. This volume, together with Volume 1, presents an overview of recent advances in SAW technology, systems and applications by some of the foremost researchers in this exciting field. Contents: Coupling-of-Modes Analysis of SAW Devices (V Plessky & J Koskela); Theory and Applications of Green''s Functions (A R Baghai-Wadji); New Piezoelectric Substrates for SAW Devices (J Kosinski); Pseudo and High Velocity Pseudo SAWs (M P da Cunha); SAW Devices Beyond 5 GHz (H Odagawa & K Yamanouchi); Wireless SAW Identification and Sensor Systems (F Schmidt & G Scholl); Interaction of Surface Acoustic Waves, Electrons, and Light (A Wixforth). Readership: Graduate students, researchers and academics in device and circuit design, as well as designers of mobile communications systems.

Partial Differential Equations

Partial Differential Equations
Author: Michael Shearer
Publisher: Princeton University Press
Total Pages: 286
Release: 2015-03-01
Genre: Mathematics
ISBN: 0691161291

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

Green’s Functions in the Theory of Ordinary Differential Equations

Green’s Functions in the Theory of Ordinary Differential Equations
Author: Alberto Cabada
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2013-11-29
Genre: Mathematics
ISBN: 1461495067

This book provides a complete and exhaustive study of the Green’s functions. Professor Cabada first proves the basic properties of Green's functions and discusses the study of nonlinear boundary value problems. Classic methods of lower and upper solutions are explored, with a particular focus on monotone iterative techniques that flow from them. In addition, Cabada proves the existence of positive solutions by constructing operators defined in cones. The book will be of interest to graduate students and researchers interested in the theoretical underpinnings of boundary value problem solutions.

Partial Differential Equations

Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2007-12-21
Genre: Mathematics
ISBN: 0470054565

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Applied Theory of Functional Differential Equations

Applied Theory of Functional Differential Equations
Author: V. Kolmanovskii
Publisher: Springer Science & Business Media
Total Pages: 246
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401580847

This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.