Gradient Flows

Gradient Flows
Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
Total Pages: 333
Release: 2008-10-29
Genre: Mathematics
ISBN: 376438722X

The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

Gradient Flows

Gradient Flows
Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 2006-03-30
Genre: Mathematics
ISBN: 3764373091

This book is devoted to a theory of gradient ?ows in spaces which are not nec- sarily endowed with a natural linear or di?erentiable structure. It is made of two parts, the ?rst one concerning gradient ?ows in metric spaces and the second one 2 1 devoted to gradient ?ows in the L -Wasserstein space of probability measures on p a separable Hilbert space X (we consider the L -Wasserstein distance, p? (1,?), as well). The two parts have some connections, due to the fact that the Wasserstein space of probability measures provides an important model to which the “metric” theory applies, but the book is conceived in such a way that the two parts can be read independently, the ?rst one by the reader more interested to Non-Smooth Analysis and Analysis in Metric Spaces, and the second one by the reader more oriented to theapplications in Partial Di?erential Equations, Measure Theory and Probability.

Hamiltonian and Gradient Flows, Algorithms, and Control

Hamiltonian and Gradient Flows, Algorithms, and Control
Author: Anthony Bloch
Publisher: American Mathematical Soc.
Total Pages: 172
Release:
Genre: Mathematics
ISBN: 9780821871362

This is the proceedings of a conference held at the Fields Insitute and designed to bring together traditionally disparate fields of mathematical research. On such key interraction occurs between dynamical systems and algorithms. This volume explores many such interractions as well as related work in optimal control and partial differential equations.

The Ricci Flow in Riemannian Geometry

The Ricci Flow in Riemannian Geometry
Author: Ben Andrews
Publisher: Springer Science & Business Media
Total Pages: 306
Release: 2011
Genre: Mathematics
ISBN: 3642162851

This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.

An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows

An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows
Author: Alessio Figalli
Publisher: European Mathematical Society
Total Pages: 0
Release: 2023-05-15
Genre: Mathematics
ISBN: 3985470502

This book provides a self-contained introduction to optimal transport, and it is intended as a starting point for any researcher who wants to enter into this beautiful subject. The presentation focuses on the essential topics of the theory: Kantorovich duality, existence and uniqueness of optimal transport maps, Wasserstein distances, the JKO scheme, Otto's calculus, and Wasserstein gradient flows. At the end, a presentation of some selected applications of optimal transport is given. Suitable for a course at the graduate level, the book also includes an appendix with a series of exercises along with their solutions. The second edition contains a number of additions, such as a new section on the Brunn–Minkowski inequality, new exercises, and various corrections throughout the text.

Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations
Author: C.M. Dafermos
Publisher: Elsevier
Total Pages: 653
Release: 2011-09-22
Genre: Mathematics
ISBN: 008046565X

The material collected in this volume reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear parabolic PDE's.Articles will highlight the present as well as expected future directions of development of the field with particular emphasis on applications. The article by Ambrosio and Savaré discussesthe most recent development in the theory of gradient flow of probability measures. After an introduction reviewing the properties of the Wasserstein space and corresponding subdifferential calculus, applications are given to evolutionarypartial differential equations. The contribution of Herrero provides a description of some mathematical approaches developed to account for quantitative as well as qualitative aspects of chemotaxis. Particular attention is paid to the limits of cell'scapability to measure external cues on the one hand, and to provide an overall description of aggregation models for the slim mold Dictyostelium discoideum on the other.The chapter written by Masmoudi deals with a rather different topic - examples of singular limits in hydrodynamics. This is nowadays a well-studied issue given the amount of new results based on the development of the existence theory for rather general systems of equations in hydrodynamics. The paper by DeLellis addreses the most recent results for the transport equations with regard to possible applications in the theory of hyperbolic systems of conservation laws. Emphasis is put on the development of the theory in the case when the governing field is only a BV function.The chapter by Rein represents a comprehensive survey of results on the Poisson-Vlasov system in astrophysics. The question of global stability of steady states is addressed in detail. The contribution of Soner is devoted to different representations of non-linear parabolic equations in terms of Markov processes. After a brief introduction on the linear theory, a class ofnon-linear equations is investigated, with applications to stochastic control and differential games.The chapter written by Zuazua presents some of the recent progresses done on the problem of controllabilty of partial differential equations. The applications include the linear wave and heat equations,parabolic equations with coefficients of low regularity, and some fluid-structure interaction models.- Volume 1 focuses on the abstract theory of evolution- Volume 2 considers more concrete probelms relating to specific applications- Volume 3 reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear PDEs

Circle-valued Morse Theory

Circle-valued Morse Theory
Author: Andrei V. Pajitnov
Publisher: Walter de Gruyter
Total Pages: 465
Release: 2008-08-22
Genre: Mathematics
ISBN: 3110197979

In the early 1920s M. Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory which is now one of the basic parts of differential topology. Circle-valued Morse theory originated from a problem in hydrodynamics studied by S. P. Novikov in the early 1980s. Nowadays, it is a constantly growing field of contemporary mathematics with applications and connections to many geometrical problems such as Arnold's conjecture in the theory of Lagrangian intersections, fibrations of manifolds over the circle, dynamical zeta functions, and the theory of knots and links in the three-dimensional sphere. The aim of the book is to give a systematic treatment of geometric foundations of the subject and recent research results. The book is accessible to first year graduate students specializing in geometry and topology.

Numerical Control: Part A

Numerical Control: Part A
Author:
Publisher: Elsevier
Total Pages: 596
Release: 2022-02-15
Genre: Mathematics
ISBN: 0323853390

Numerical Control: Part A, Volume 23 in the Handbook of Numerical Analysis series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this volume include Numerics for finite-dimensional control systems, Moments and convex optimization for analysis and control of nonlinear PDEs, The turnpike property in optimal control, Structure-Preserving Numerical Schemes for Hamiltonian Dynamics, Optimal Control of PDEs and FE-Approximation, Filtration techniques for the uniform controllability of semi-discrete hyperbolic equations, Numerical controllability properties of fractional partial differential equations, Optimal Control, Numerics, and Applications of Fractional PDEs, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on Numerical Control

Scale Space and Variational Methods in Computer Vision

Scale Space and Variational Methods in Computer Vision
Author: Luca Calatroni
Publisher: Springer Nature
Total Pages: 767
Release: 2023-05-09
Genre: Computers
ISBN: 3031319753

This book constitutes the proceedings of the 9th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2023, which took place in Santa Margherita di Pula, Italy, in May 2023. The 57 papers presented in this volume were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Inverse Problems in Imaging; Machine and Deep Learning in Imaging; Optimization for Imaging: Theory and Methods; Scale Space, PDEs, Flow, Motion and Registration.