Goldbach Conjecture
Download Goldbach Conjecture full books in PDF, epub, and Kindle. Read online free Goldbach Conjecture ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Apostolos Doxiadis |
Publisher | : Faber & Faber |
Total Pages | : 148 |
Release | : 2012-11-15 |
Genre | : Fiction |
ISBN | : 057129569X |
Uncle Petros is a family joke. An ageing recluse, he lives alone in a suburb of Athens, playing chess and tending to his garden. If you didn't know better, you'd surely think he was one of life's failures. But his young nephew suspects otherwise. For Uncle Petros, he discovers, was once a celebrated mathematician, brilliant and foolhardy enough to stake everything on solving a problem that had defied all attempts at proof for nearly three centuries - Goldbach's Conjecture. His quest brings him into contact with some of the century's greatest mathematicians, including the Indian prodigy Ramanujan and the young Alan Turing. But his struggle is lonely and single-minded, and by the end it has apparently destroyed his life. Until that is a final encounter with his nephew opens up to Petros, once more, the deep mysterious beauty of mathematics. Uncle Petros and Goldbach's Conjecture is an inspiring novel of intellectual adventure, proud genius, the exhilaration of pure mathematics - and the rivalry and antagonism which torment those who pursue impossible goals.
Author | : Yuan Wang |
Publisher | : World Scientific |
Total Pages | : 346 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9789812776600 |
This book provides a detailed description of a most important unsolved mathematical problem OCo the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920''s. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."
Author | : Michael Th. Rassias |
Publisher | : Springer |
Total Pages | : 122 |
Release | : 2017-07-07 |
Genre | : Mathematics |
ISBN | : 9783319579122 |
Important results surrounding the proof of Goldbach's ternary conjecture are presented in this book. Beginning with an historical perspective along with an overview of essential lemmas and theorems, this monograph moves on to a detailed proof of Vinogradov's theorem. The principles of the Hardy-Littlewood circle method are outlined and applied to Goldbach's ternary conjecture. New results due to H. Maier and the author on Vinogradov's theorem are proved under the assumption of the Riemann hypothesis. The final chapter discusses an approach to Goldbach's conjecture through theorems by L. G. Schnirelmann. This book concludes with an Appendix featuring a sketch of H. Helfgott's proof of Goldbach's ternary conjecture. The Appendix also presents some biographical remarks of mathematicians whose research has played a seminal role on the Goldbach ternary problem. The author's step-by-step approach makes this book accessible to those that have mastered classical number theory and fundamental notions of mathematical analysis. This book will be particularly useful to graduate students and mathematicians in analytic number theory, approximation theory as well as to researchers working on Goldbach's problem.
Author | : Andrei-Lucian Drăgoi |
Publisher | : Dr. Andrei-Lucian Drăgoi |
Total Pages | : 58 |
Release | : 2021-07-30 |
Genre | : Mathematics |
ISBN | : |
This work proposes the generalization of the binary (strong) Goldbach’s Conjecture, briefly called “the Vertical Binary Goldbach’s Conjecture”, which is essentially a meta-conjecture because it states an infinite number of conjectures stronger than Goldbach’s, which all apply on “iterative” primes with recursive prime indexes, with many potential theoretical and practical applications in mathematics and physics) and a very special self-similar property of the primes subset of positive integers.
Author | : Andrei-Lucian Drăgoi |
Publisher | : Infinite Study |
Total Pages | : 32 |
Release | : |
Genre | : |
ISBN | : |
This article proposes a synthesized classification of some Goldbach-like conjectures, including those which are “stronger” than the Binary Goldbach’s Conjecture (BGC) and launches a new generalization of BGC briefly called “the Vertical Binary Goldbach’s Conjecture” (VBGC), which is essentially a metaconjecture, as VBGC states an infinite number of conjectures stronger than BGC, which all apply on “iterative” primes with recursive prime indexes (i-primeths).
Author | : Yuan Wang |
Publisher | : World Scientific |
Total Pages | : 342 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9812381597 |
This book provides a detailed description of a most important unsolved mathematical problem ? the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture.
Author | : Daniel Shanks |
Publisher | : American Mathematical Society |
Total Pages | : 321 |
Release | : 2024-01-24 |
Genre | : Mathematics |
ISBN | : 1470476452 |
The investigation of three problems, perfect numbers, periodic decimals, and Pythagorean numbers, has given rise to much of elementary number theory. In this book, Daniel Shanks, past editor of Mathematics of Computation, shows how each result leads to further results and conjectures. The outcome is a most exciting and unusual treatment. This edition contains a new chapter presenting research done between 1962 and 1978, emphasizing results that were achieved with the help of computers.
Author | : Ian Stewart |
Publisher | : Profile Books |
Total Pages | : 468 |
Release | : 2013-03-07 |
Genre | : Mathematics |
ISBN | : 1847653510 |
There are some mathematical problems whose significance goes beyond the ordinary - like Fermat's Last Theorem or Goldbach's Conjecture - they are the enigmas which define mathematics. The Great Mathematical Problems explains why these problems exist, why they matter, what drives mathematicians to incredible lengths to solve them and where they stand in the context of mathematics and science as a whole. It contains solved problems - like the Poincaré Conjecture, cracked by the eccentric genius Grigori Perelman, who refused academic honours and a million-dollar prize for his work, and ones which, like the Riemann Hypothesis, remain baffling after centuries. Stewart is the guide to this mysterious and exciting world, showing how modern mathematicians constantly rise to the challenges set by their predecessors, as the great mathematical problems of the past succumb to the new techniques and ideas of the present.
Author | : Tom M. Apostol |
Publisher | : Springer Science & Business Media |
Total Pages | : 352 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475755791 |
"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS
Author | : Tianxin Cai |
Publisher | : World Scientific |
Total Pages | : 430 |
Release | : 2021-07-21 |
Genre | : Mathematics |
ISBN | : 9811218315 |
Natural numbers are the oldest human invention. This book describes their nature, laws, history and current status. It has seven chapters. The first five chapters contain not only the basics of elementary number theory for the convenience of teaching and continuity of reading, but also many latest research results. The first time in history, the traditional name of the Chinese Remainder Theorem is replaced with the Qin Jiushao Theorem in the book to give him a full credit for his establishment of this famous theorem in number theory. Chapter 6 is about the fascinating congruence modulo an integer power, and Chapter 7 introduces a new problem extracted by the author from the classical problems of number theory, which is out of the combination of additive number theory and multiplicative number theory.One feature of the book is the supplementary material after each section, there by broadening the reader's knowledge and imagination. These contents either discuss the rudiments of some aspects or introduce new problems or conjectures and their extensions, such as perfect number problem, Egyptian fraction problem, Goldbach's conjecture, the twin prime conjecture, the 3x + 1 problem, Hilbert Waring problem, Euler's conjecture, Fermat's Last Theorem, Laudau's problem and etc.This book is written for anyone who loves natural numbers, and it can also be read by mathematics majors, graduate students, and researchers. The book contains many illustrations and tables. Readers can appreciate the author's sensitivity of history, broad range of knowledge, and elegant writing style, while benefiting from the classical works and great achievements of masters in number theory.