Lectures in Differentiable Dynamics

Lectures in Differentiable Dynamics
Author: Lawrence Markus
Publisher: American Mathematical Soc.
Total Pages: 85
Release: 1980
Genre: Mathematics
ISBN: 0821816950

Offers an exposition of the central results of Differentiable Dynamics. This edition includes an Appendix reviewing the developments under five basic areas: nonlinear oscillations, diffeomorphisms and foliations, general theory; dissipative dynamics, general theory; conservative dynamics, and, chaos, catastrophe, and multi-valued trajectories.

Elements of Differentiable Dynamics and Bifurcation Theory

Elements of Differentiable Dynamics and Bifurcation Theory
Author: David Ruelle
Publisher: Elsevier
Total Pages: 196
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483272184

Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.

Global Stability of Dynamical Systems

Global Stability of Dynamical Systems
Author: Michael Shub
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475719477

These notes are the result of a course in dynamical systems given at Orsay during the 1976-77 academic year. I had given a similar course at the Gradu ate Center of the City University of New York the previous year and came to France equipped with the class notes of two of my students there, Carol Hurwitz and Michael Maller. My goal was to present Smale's n-Stability Theorem as completely and compactly as possible and in such a way that the students would have easy access to the literature. I was not confident that I could do all this in lectures in French, so I decided to distribute lecture notes. I wrote these notes in English and Remi Langevin translated them into French. His work involved much more than translation. He consistently corrected for style, clarity, and accuracy. Albert Fathi got involved in reading the manuscript. His role quickly expanded to extensive rewriting and writing. Fathi wrote (5. 1) and (5. 2) and rewrote Theorem 7. 8 when I was in despair of ever getting it right with all the details. He kept me honest at all points and played a large role in the final form of the manuscript. He also did the main work in getting the manuscript ready when I had left France and Langevin was unfortunately unavailable. I ran out of steam by the time it came to Chapter 10. M.

Global Transversality, Resonance and Chaotic Dynamics

Global Transversality, Resonance and Chaotic Dynamics
Author: Albert C. J. Luo
Publisher: World Scientific
Total Pages: 461
Release: 2008
Genre: Science
ISBN: 9812771123

This unique book presents a different point of view on the fundamental theory of global transversality, resonance and chaotic dynamics in n -dimensional nonlinear dynamic systems. The methodology and techniques presented in this book are applicable to nonlinear dynamical systems in general. This book provides useful tools for analytical and numerical predictions of chaos in nonlinear Hamiltonian and dissipative systems. All theoretical results are strictly proved. However, the ideas presented in this book are less formal and rigorous in an informal and lively manner. The author hopes the initial ideas may give some inspirations in the field of nonlinear dynamics. With physical concepts, the author also used the simple, mathematical language to write this book. Therefore, this book is very readable, which can be either a textbook for senior undergraduate and graduate students or a reference book for researches in nonlinear dynamics. Sample Chapter(s). Chapter 1: Introduction (1,196 KB). Contents: Differential Geometry of Flows; Global Transversality in Continuous Dynamical Systems; Chaotic Layer Dynamics; Two-Dimensional Stochastic Layers; Stochasticity in Resonant Separatrix Layers; Nonlinear Dynamics on an Equi-energy Surface; Stability and Grazing in Dissipative Systems; Global Dynamics in Two-Dimensional Dynamical Systems; Flow Switchability in Discontinuous Dynamical Systems. Readership: Mathematicians, physicists, researchers and engineers in mechanical engineering and electrical engineering as well as university professors and students.

Differentiable Manifolds

Differentiable Manifolds
Author: Lawrence Conlon
Publisher: Springer Science & Business Media
Total Pages: 402
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475722842

This book is based on the full year Ph.D. qualifying course on differentiable manifolds, global calculus, differential geometry, and related topics, given by the author at Washington University several times over a twenty year period. It is addressed primarily to second year graduate students and well prepared first year students. Presupposed is a good grounding in general topology and modern algebra, especially linear algebra and the analogous theory of modules over a commutative, unitary ring. Although billed as a "first course" , the book is not intended to be an overly sketchy introduction. Mastery of this material should prepare the student for advanced topics courses and seminars in differen tial topology and geometry. There are certain basic themes of which the reader should be aware. The first concerns the role of differentiation as a process of linear approximation of non linear problems. The well understood methods of linear algebra are then applied to the resulting linear problem and, where possible, the results are reinterpreted in terms of the original nonlinear problem. The process of solving differential equations (i. e., integration) is the reverse of differentiation. It reassembles an infinite array of linear approximations, result ing from differentiation, into the original nonlinear data. This is the principal tool for the reinterpretation of the linear algebra results referred to above.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Author: James D. Meiss
Publisher: SIAM
Total Pages: 410
Release: 2017-01-24
Genre: Mathematics
ISBN: 161197464X

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.