Geometry in Problems

Geometry in Problems
Author: Alexander Shen
Publisher: American Mathematical Soc.
Total Pages: 229
Release: 2016
Genre: Juvenile Nonfiction
ISBN: 1470419211

Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America

Problems in Geometry

Problems in Geometry
Author: Marcel Berger
Publisher: Springer Science & Business Media
Total Pages: 275
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475718365

Written as a supplement to Marcel Berger’s popular two-volume set, Geometry I and II (Universitext), this book offers a comprehensive range of exercises, problems, and full solutions. Each chapter corresponds directly to one in the relevant volume, from which it also provides a summary of key ideas. Where the original Geometry volumes tend toward challenging problems without hints, this book offers a wide range of material that begins at an accessible level, and includes suggestions for nearly every problem. Bountiful in illustrations and complete in its coverage of topics from affine and projective spaces, to spheres and conics, Problems in Geometry is a valuable addition to studies in geometry at many levels.

The Humongous Book of Algebra Problems

The Humongous Book of Algebra Problems
Author: W. Michael Kelley
Publisher: Penguin
Total Pages: 576
Release: 2008-07
Genre: Mathematics
ISBN: 9781592577224

Presents algebra exercises with easy-to-follow guidelines, and includes over one thousand problems in numerous algebraic topics.

Famous Problems of Geometry and How to Solve Them

Famous Problems of Geometry and How to Solve Them
Author: Benjamin Bold
Publisher: Courier Corporation
Total Pages: 148
Release: 2012-05-11
Genre: Science
ISBN: 0486137635

Delve into the development of modern mathematics and match wits with Euclid, Newton, Descartes, and others. Each chapter explores an individual type of challenge, with commentary and practice problems. Solutions.

Challenging Problems in Geometry

Challenging Problems in Geometry
Author: Alfred S. Posamentier
Publisher: Courier Corporation
Total Pages: 275
Release: 2012-04-30
Genre: Mathematics
ISBN: 0486134865

Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.

Methods of Solving Complex Geometry Problems

Methods of Solving Complex Geometry Problems
Author: Ellina Grigorieva
Publisher: Springer Science & Business Media
Total Pages: 247
Release: 2013-08-13
Genre: Mathematics
ISBN: 331900705X

This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.

Unsolved Problems in Geometry

Unsolved Problems in Geometry
Author: Hallard T. Croft
Publisher: Springer Science & Business Media
Total Pages: 213
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461209633

Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians.

Mathematics via Problems

Mathematics via Problems
Author: Mikhail B. Skopenkov
Publisher: American Mathematical Society, Simons Laufer Mathematical Sciences Institute (SLMath, formerly MSRI)
Total Pages: 222
Release: 2023-11-17
Genre: Mathematics
ISBN: 1470460106

This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material that is not standard in the school curriculum are included. To help students that might be unfamiliar with new material, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions. The book is based on classes taught by the authors at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, SLMath (formerly MSRI) and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.

Unsolved Problems in Geometry

Unsolved Problems in Geometry
Author: Hallard T. Croft
Publisher: New York : Springer-Verlag
Total Pages: 224
Release: 1991
Genre: Mathematics
ISBN:

For mathematicians or others who wish to keep up to date with the state of the art of geometrical problems, this collection of problems that are easy to state and understand but are as yet unsolved covers a wide variety of topics including convex sets, polyhedra, packing and covering, tiling, and combinatorial problems. Annotation copyrighted by Book News, Inc., Portland, OR.

Problems and Solutions in Euclidean Geometry

Problems and Solutions in Euclidean Geometry
Author: M. N. Aref
Publisher: Courier Corporation
Total Pages: 274
Release: 2010-01-01
Genre: Mathematics
ISBN: 0486477207

Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.