Geometry in Partial Differential Equations

Geometry in Partial Differential Equations
Author: Agostino Prastaro
Publisher: World Scientific
Total Pages: 482
Release: 1994
Genre: Mathematics
ISBN: 9789810214074

This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.

Nonlinear partial differential equations in differential geometry

Nonlinear partial differential equations in differential geometry
Author: Robert Hardt
Publisher: American Mathematical Soc.
Total Pages: 356
Release: 1996
Genre: Mathematics
ISBN: 9780821804315

This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.

Lectures on Partial Differential Equations

Lectures on Partial Differential Equations
Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
Total Pages: 168
Release: 2013-06-29
Genre: Mathematics
ISBN: 3662054418

Choice Outstanding Title! (January 2006) This richly illustrated text covers the Cauchy and Neumann problems for the classical linear equations of mathematical physics. A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging! What makes the book unique is Arnold's particular talent at holding a topic up for examination from a new and fresh perspective. He likes to blow away the fog of generality that obscures so much mathematical writing and reveal the essentially simple intuitive ideas underlying the subject. No other mathematical writer does this quite so well as Arnold.

Some Nonlinear Problems in Riemannian Geometry

Some Nonlinear Problems in Riemannian Geometry
Author: Thierry Aubin
Publisher: Springer Science & Business Media
Total Pages: 414
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662130068

This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.

Geometric Analysis and Nonlinear Partial Differential Equations

Geometric Analysis and Nonlinear Partial Differential Equations
Author: Stefan Hildebrandt
Publisher: Springer Science & Business Media
Total Pages: 663
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642556272

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.

Geometric Partial Differential Equations and Image Analysis

Geometric Partial Differential Equations and Image Analysis
Author: Guillermo Sapiro
Publisher: Cambridge University Press
Total Pages: 415
Release: 2001-01-08
Genre: Computers
ISBN: 0521790751

This book provides an introduction to the use of geometric partial differential equations in image processing and computer vision. State-of-the-art practical results in a large number of real problems are achieved with the techniques described in this book. Applications covered include image segmentation, shape analysis, image enhancement, and tracking. This book will be a useful resource for researchers and practioners. It is intened to provide information for people investigating new solutions to image processing problems as well as for people searching for existent advanced solutions.

Partial Differential Equations for Geometric Design

Partial Differential Equations for Geometric Design
Author: Hassan Ugail
Publisher: Springer Science & Business Media
Total Pages: 110
Release: 2011-08-24
Genre: Computers
ISBN: 0857297848

The subject of Partial Differential Equations (PDEs) which first emerged in the 18th century holds an exciting and special position in the applications relating to the mathematical modelling of physical phenomena. The subject of PDEs has been developed by major names in Applied Mathematics such as Euler, Legendre, Laplace and Fourier and has applications to each and every physical phenomenon known to us e.g. fluid flow, elasticity, electricity and magnetism, weather forecasting and financial modelling. This book introduces the recent developments of PDEs in the field of Geometric Design particularly for computer based design and analysis involving the geometry of physical objects. Starting from the basic theory through to the discussion of practical applications the book describes how PDEs can be used in the area of Computer Aided Design and Simulation Based Design. Extensive examples with real life applications of PDEs in the area of Geometric Design are discussed in the book.

Partial Differential Equations 2

Partial Differential Equations 2
Author: Friedrich Sauvigny
Publisher: Springer Science & Business Media
Total Pages: 401
Release: 2006-10-11
Genre: Mathematics
ISBN: 3540344624

This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.

Partial Differential Equations and Geometric Measure Theory

Partial Differential Equations and Geometric Measure Theory
Author: Alessio Figalli
Publisher: Springer
Total Pages: 224
Release: 2018-05-23
Genre: Mathematics
ISBN: 3319740423

This book collects together lectures by some of the leaders in the field of partial differential equations and geometric measure theory. It features a wide variety of research topics in which a crucial role is played by the interaction of fine analytic techniques and deep geometric observations, combining the intuitive and geometric aspects of mathematics with analytical ideas and variational methods. The problems addressed are challenging and complex, and often require the use of several refined techniques to overcome the major difficulties encountered. The lectures, given during the course "Partial Differential Equations and Geometric Measure Theory'' in Cetraro, June 2–7, 2014, should help to encourage further research in the area. The enthusiasm of the speakers and the participants of this CIME course is reflected in the text.