Topological Invariants of Plane Curves and Caustics

Topological Invariants of Plane Curves and Caustics
Author: Vladimir Igorevich Arnolʹd
Publisher: American Mathematical Soc.
Total Pages: 76
Release:
Genre: Mathematics
ISBN: 9780821882641

This text is the first exposition of a new theory which unifies the theories of knots, plane curves, caustics, and wavefronts in differential, symplectic, and contact geometry and topology.

Singularities of Caustics and Wave Fronts

Singularities of Caustics and Wave Fronts
Author: Vladimir Arnold
Publisher: Springer Science & Business Media
Total Pages: 271
Release: 2013-12-01
Genre: Mathematics
ISBN: 9401133301

One service mathematics has rendered the 'Et moi ...) si j'avait su comment en revenir, human race. It has put common sense back je n'y serais point aile.' Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. ErieT. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Applications of Contact Geometry and Topology in Physics

Applications of Contact Geometry and Topology in Physics
Author: Arkady Leonidovich Kholodenko
Publisher: World Scientific
Total Pages: 492
Release: 2013
Genre: Mathematics
ISBN: 9814412090

Although contact geometry and topology is briefly discussed in V I Arnol''d''s book Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges An Introduction to Contact Topology (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph Contact Geometry and Nonlinear Differential Equations (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.

Singularities in Geometry and Topology

Singularities in Geometry and Topology
Author: Jean-Paul Brasselet
Publisher: World Scientific
Total Pages: 918
Release: 2007
Genre: Mathematics
ISBN: 981270681X

Singularity theory appears in numerous branches of mathematics, as well as in many emerging areas such as robotics, control theory, imaging, and various evolving areas in physics. The purpose of this proceedings volume is to cover recent developments in singularity theory and to introduce young researchers from developing countries to singularities in geometry and topology. The contributions discuss singularities in both complex and real geometry. As such, they provide a natural continuation of the previous school on singularities held at ICTP (1991), which is recognized as having had a major influence in the field.

Arnold's Problems

Arnold's Problems
Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
Total Pages: 664
Release: 2004-06-24
Genre: Mathematics
ISBN: 9783540206149

Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research

Topological Invariants of Plane Curves and Caustics

Topological Invariants of Plane Curves and Caustics
Author: Vladimir Igorevich Arnolʹd
Publisher: American Mathematical Soc.
Total Pages: 70
Release: 1994
Genre: Mathematics
ISBN: 0821803085

This book describes recent progress in the topological study of plane curves. The theory of plane curves is much richer than knot theory, which may be considered the commutative version of the theory of plane curves. This study is based on singularity theory: the infinite-dimensional space of curves is subdivided by the discriminant hypersurfaces into parts consisting of generic curves of the same type. The invariants distinguishing the types are defined by their jumps at the crossings of these hypersurfaces. Arnold describes applications to the geometry of caustics and of wavefronts in symplectic and contact geometry. These applications extend the classical four-vertex theorem of elementary plane geometry to estimates on the minimal number of cusps necessary for the reversion of a wavefront and to generalizations of the last geometrical theorem of Jacobi on conjugated points on convex surfaces. These estimates open a new chapter in symplectic and contact topology: the theory of Lagrangian and Legendrian collapses, providing an unusual and far-reaching higher-dimensional extension of Sturm theory of the oscillations of linear combinations of eigenfunctions.