Geometric Topology In Dimensions 2 And 3
Download Geometric Topology In Dimensions 2 And 3 full books in PDF, epub, and Kindle. Read online free Geometric Topology In Dimensions 2 And 3 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : E.E. Moise |
Publisher | : Springer Science & Business Media |
Total Pages | : 272 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1461299063 |
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
Author | : R. H. Bing |
Publisher | : American Mathematical Soc. |
Total Pages | : 250 |
Release | : 1983-12-31 |
Genre | : Mathematics |
ISBN | : 0821810405 |
Suitable for students and researchers in topology. this work provides the reader with an understanding of the physical properties of Euclidean 3-space - the space in which we presume we live.
Author | : William P. Thurston |
Publisher | : American Mathematical Society |
Total Pages | : 337 |
Release | : 2023-06-16 |
Genre | : Mathematics |
ISBN | : 1470474743 |
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.
Author | : William P. Thurston |
Publisher | : Princeton University Press |
Total Pages | : 340 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 9780691083049 |
Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.
Author | : Michael Davis |
Publisher | : Princeton University Press |
Total Pages | : 601 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0691131384 |
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Author | : Edwin E. Moise |
Publisher | : |
Total Pages | : 262 |
Release | : 1977 |
Genre | : Homeomorphisms |
ISBN | : 9783540902201 |
Author | : Danny Calegari |
Publisher | : Oxford University Press on Demand |
Total Pages | : 378 |
Release | : 2007-05-17 |
Genre | : Mathematics |
ISBN | : 0198570082 |
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Author | : Albert Marden |
Publisher | : Cambridge University Press |
Total Pages | : 535 |
Release | : 2016-02-01 |
Genre | : Mathematics |
ISBN | : 1316432521 |
Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.
Author | : Herbert Edelsbrunner |
Publisher | : American Mathematical Society |
Total Pages | : 241 |
Release | : 2022-01-31 |
Genre | : Mathematics |
ISBN | : 1470467690 |
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
Author | : Jean-Daniel Boissonnat |
Publisher | : Cambridge University Press |
Total Pages | : 247 |
Release | : 2018-09-27 |
Genre | : Computers |
ISBN | : 1108419399 |
A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.