Geometric Scattering Theory

Geometric Scattering Theory
Author: Richard B. Melrose
Publisher: Cambridge University Press
Total Pages: 134
Release: 1995-07-28
Genre: Mathematics
ISBN: 9780521498104

These lecture notes are intended as a non-technical overview of scattering theory.

Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances
Author: Semyon Dyatlov
Publisher: American Mathematical Soc.
Total Pages: 649
Release: 2019-09-10
Genre: Mathematics
ISBN: 147044366X

Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.

Grassmannian Geometry of Scattering Amplitudes

Grassmannian Geometry of Scattering Amplitudes
Author: Nima Arkani-Hamed
Publisher: Cambridge University Press
Total Pages: 205
Release: 2016-05-05
Genre: Science
ISBN: 1316571645

Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the broader fields of mathematical physics.

Integral Equation Methods in Scattering Theory

Integral Equation Methods in Scattering Theory
Author: David Colton
Publisher: SIAM
Total Pages: 286
Release: 2013-11-15
Genre: Mathematics
ISBN: 1611973155

This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.

Spectral Theory of Infinite-Area Hyperbolic Surfaces

Spectral Theory of Infinite-Area Hyperbolic Surfaces
Author: David Borthwick
Publisher: Birkhäuser
Total Pages: 471
Release: 2016-07-12
Genre: Mathematics
ISBN: 3319338773

This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)

Dispersion Decay and Scattering Theory

Dispersion Decay and Scattering Theory
Author: Alexander Komech
Publisher: John Wiley & Sons
Total Pages: 236
Release: 2014-08-21
Genre: Mathematics
ISBN: 1118382889

A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations. The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included. Dispersion Decay and Scattering Theory is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.

Light Scattering by Ice Crystals

Light Scattering by Ice Crystals
Author: Kuo-Nan Liou
Publisher: Cambridge University Press
Total Pages: 461
Release: 2016-10-06
Genre: Science
ISBN: 0521889162

This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.

Elementary Scattering Theory

Elementary Scattering Theory
Author: D.S. Sivia
Publisher: Oxford University Press, USA
Total Pages: 215
Release: 2011-01-06
Genre: Science
ISBN: 0199228671

This book provides the basic theoretical background for X-ray and neutron scattering experiments. Since these techniques are increasingly being used by biologists and chemists, as well as physicists, the book is intended to be accessible to a broad spectrum of scientists.

Quantum Mechanics with Applications to Nanotechnology and Information Science

Quantum Mechanics with Applications to Nanotechnology and Information Science
Author: Yehuda B. Band
Publisher: Academic Press
Total Pages: 993
Release: 2013-01-10
Genre: Science
ISBN: 0444537872

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has

Light Scattering by Systems of Particles

Light Scattering by Systems of Particles
Author: Adrian Doicu
Publisher: Springer
Total Pages: 333
Release: 2006-10-19
Genre: Science
ISBN: 3540336974

This book develops the theory of the null-field method (also called T-matrix method), covering almost all aspects and current applications. This book also incorporates FORTRAN programs and simulation results. Worked examples of the application of the FORTRAN programs show readers how to adapt or modify the programs for their specific application.