Geometric Realizations Of Curvature
Download Geometric Realizations Of Curvature full books in PDF, epub, and Kindle. Read online free Geometric Realizations Of Curvature ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Miguel Brozos-vazquez |
Publisher | : World Scientific |
Total Pages | : 263 |
Release | : 2012-03-16 |
Genre | : Mathematics |
ISBN | : 1908977744 |
A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be phrased as problems involving the geometric realization of curvature. Curvature decompositions are central to all investigations in this area. The authors present numerous results including the Singer-Thorpe decomposition, the Bokan decomposition, the Nikcevic decomposition, the Tricerri-Vanhecke decomposition, the Gray-Hervella decomposition and the De Smedt decomposition. They then proceed to draw appropriate geometric conclusions from these decompositions.The book organizes, in one coherent volume, the results of research completed by many different investigators over the past 30 years. Complete proofs are given of results that are often only outlined in the original publications. Whereas the original results are usually in the positive definite (Riemannian setting), here the authors extend the results to the pseudo-Riemannian setting and then further, in a complex framework, to para-Hermitian geometry as well. In addition to that, new results are obtained as well, making this an ideal text for anyone wishing to further their knowledge of the science of curvature.
Author | : Enrico Arbarello |
Publisher | : Springer Science & Business Media |
Total Pages | : 983 |
Release | : 2011-03-10 |
Genre | : Mathematics |
ISBN | : 3540693920 |
The second volume of the Geometry of Algebraic Curves is devoted to the foundations of the theory of moduli of algebraic curves. Its authors are research mathematicians who have actively participated in the development of the Geometry of Algebraic Curves. The subject is an extremely fertile and active one, both within the mathematical community and at the interface with the theoretical physics community. The approach is unique in its blending of algebro-geometric, complex analytic and topological/combinatorial methods. It treats important topics such as Teichmüller theory, the cellular decomposition of moduli and its consequences and the Witten conjecture. The careful and comprehensive presentation of the material is of value to students who wish to learn the subject and to experts as a reference source. The first volume appeared 1985 as vol. 267 of the same series.
Author | : Peter B. Gilkey |
Publisher | : World Scientific |
Total Pages | : 316 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 9812799699 |
A central problem in differential geometry is to relate algebraic properties of the Riemann curvature tensor to the underlying geometry of the manifold. The full curvature tensor is in general quite difficult to deal with. This book presents results about the geometric consequences that follow if various natural operators defined in terms of the Riemann curvature tensor (the Jacobi operator, the skew-symmetric curvature operator, the Szabo operator, and higher order generalizations) are assumed to have constant eigenvalues or constant Jordan normal form in the appropriate domains of definition. The book presents algebraic preliminaries and various Schur type problems; deals with the skew-symmetric curvature operator in the real and complex settings and provides the classification of algebraic curvature tensors whose skew-symmetric curvature has constant rank 2 and constant eigenvalues; discusses the Jacobi operator and a higher order generalization and gives a unified treatment of the Osserman conjecture and related questions; and establishes the results from algebraic topology that are necessary for controlling the eigenvalue structures. An extensive bibliography is provided. Results are described in the Riemannian, Lorentzian, and higher signature settings, and many families of examples are displayed. Contents: Algebraic Curvature Tensors; The Skew-Symmetric Curvature Operator; The Jacobi Operator; Controlling the Eigenvalue Structure. Readership: Researchers and graduate students in geometry and topology.
Author | : Martin R. Bridson |
Publisher | : Springer Science & Business Media |
Total Pages | : 665 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662124947 |
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.
Author | : Peter Gilkey |
Publisher | : Springer Nature |
Total Pages | : 159 |
Release | : 2022-05-31 |
Genre | : Mathematics |
ISBN | : 3031023978 |
This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading. Math subject classifications : Primary: 53B20 -- (PACS: 02.40.Hw) Secondary: 32Q15, 51F25, 51P05, 53B30, 53C50, 53C80, 58A30, 83F05, 85A04 Table of Contents: Basic Algebraic Notions / Basic Geometrical Notions / Walker Structures / Three-Dimensional Lorentzian Walker Manifolds / Four-Dimensional Walker Manifolds / The Spectral Geometry of the Curvature Tensor / Hermitian Geometry / Special Walker Manifolds
Author | : Miguel Sánchez |
Publisher | : Springer Science & Business Media |
Total Pages | : 357 |
Release | : 2012-11-06 |
Genre | : Mathematics |
ISBN | : 1461448972 |
Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed. Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included. This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.
Author | : Shlomo Sternberg |
Publisher | : Courier Corporation |
Total Pages | : 418 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 0486292711 |
Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.
Author | : Jes£s A. Alvarez L¢pez |
Publisher | : World Scientific |
Total Pages | : 343 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 9814261165 |
This volume contains research and expository papers on recent advances in foliations and Riemannian geometry. Some of the topics covered in this volume include: topology, geometry, dynamics and analysis of foliations, curvature, submanifold theory, Lie groups and harmonic maps.Among the contributions, readers may find an extensive survey on characteristic classes of Riemannian foliations offering also new results, an article showing the uniform simplicity of certain diffeomorphism groups, an exposition of convergences of contact structures to foliations from the point of view of Thurston's and Thurston?Bennequin's inequalities, a discussion about Fatou?Julia decompositions for foliations and a description of singular Riemannian foliations on spaces without conjugate points.Papers on submanifold theory focus on the existence of graphs with prescribed mean curvature and mean curvature flow for spacelike graphs, isometric and conformal deformations and detailed surveys on totally geodesic submanifolds in symmetric spaces, cohomogeneity one actions on hyperbolic spaces and rigidity of geodesic spheres in space forms. Geometric realizability of curvature tensors and curvature operators are also treated in this volume with special attention to the affine and the pseudo-Riemannian settings. Also, some contributions on biharmonic maps and submanifolds enrich the scope of this volume in providing an overview of different topics of current interest in differential geometry.
Author | : Ulrike Luise Tillmann |
Publisher | : Cambridge University Press |
Total Pages | : 596 |
Release | : 2004-06-28 |
Genre | : Mathematics |
ISBN | : 9780521540490 |
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
Author | : Ron Donagi |
Publisher | : Cambridge University Press |
Total Pages | : 421 |
Release | : 2020-04-02 |
Genre | : Mathematics |
ISBN | : 1108715745 |
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.