Algebraic Geometry over C∞-Rings

Algebraic Geometry over C∞-Rings
Author: Dominic Joyce
Publisher: American Mathematical Soc.
Total Pages: 152
Release: 2019-09-05
Genre: Mathematics
ISBN: 1470436450

If X is a manifold then the R-algebra C∞(X) of smooth functions c:X→R is a C∞-ring. That is, for each smooth function f:Rn→R there is an n-fold operation Φf:C∞(X)n→C∞(X) acting by Φf:(c1,…,cn)↦f(c1,…,cn), and these operations Φf satisfy many natural identities. Thus, C∞(X) actually has a far richer structure than the obvious R-algebra structure. The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by C∞-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are C∞-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on C∞-schemes, and C∞-stacks, in particular Deligne-Mumford C∞-stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: C∞-rings and C∞ -schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, “derived” versions of manifolds and orbifolds related to Spivak's “derived manifolds”.

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation
Author: Charles Collot
Publisher: American Mathematical Soc.
Total Pages: 110
Release: 2019-09-05
Genre: Mathematics
ISBN: 1470436264

The authors consider the energy super critical semilinear heat equation The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. They then show how the sole knowledge of this spectral gap in weighted spaces implies the finite codimensional nonradial stability of these solutions for smooth well localized initial data using energy bounds. The whole scheme draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.

Moufang Loops and Groups with Triality are Essentially the Same Thing

Moufang Loops and Groups with Triality are Essentially the Same Thing
Author: J. I. Hall
Publisher: American Mathematical Soc.
Total Pages: 206
Release: 2019-09-05
Genre: Mathematics
ISBN: 1470436221

In 1925 Élie Cartan introduced the principal of triality specifically for the Lie groups of type D4, and in 1935 Ruth Moufang initiated the study of Moufang loops. The observation of the title in 1978 was made by Stephen Doro, who was in turn motivated by the work of George Glauberman from 1968. Here the author makes the statement precise in a categorical context. In fact the most obvious categories of Moufang loops and groups with triality are not equivalent, hence the need for the word “essentially.”

Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory

Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory
Author: Raúl E. Curto
Publisher: American Mathematical Soc.
Total Pages: 112
Release: 2019-09-05
Genre: Mathematics
ISBN: 1470436248

In this paper, the authors study matrix functions of bounded type from the viewpoint of describing an interplay between function theory and operator theory. They first establish a criterion on the coprime-ness of two singular inner functions and obtain several properties of the Douglas-Shapiro-Shields factorizations of matrix functions of bounded type. They propose a new notion of tensored-scalar singularity, and then answer questions on Hankel operators with matrix-valued bounded type symbols. They also examine an interpolation problem related to a certain functional equation on matrix functions of bounded type; this can be seen as an extension of the classical Hermite-Fejér Interpolation Problem for matrix rational functions. The authors then extend the H∞-functional calculus to an H∞¯¯¯¯¯¯¯¯¯+H∞-functional calculus for the compressions of the shift. Next, the authors consider the subnormality of Toeplitz operators with matrix-valued bounded type symbols and, in particular, the matrix-valued version of Halmos's Problem 5 and then establish a matrix-valued version of Abrahamse's Theorem. They also solve a subnormal Toeplitz completion problem of 2×2 partial block Toeplitz matrices. Further, they establish a characterization of hyponormal Toeplitz pairs with matrix-valued bounded type symbols and then derive rank formulae for the self-commutators of hyponormal Toeplitz pairs.

Compact Quotients of Cahen-Wallach Spaces

Compact Quotients of Cahen-Wallach Spaces
Author: Ines Kath
Publisher: American Mathematical Soc.
Total Pages: 96
Release: 2020-02-13
Genre: Education
ISBN: 1470441039

Indecomposable symmetric Lorentzian manifolds of non-constant curvature are called Cahen-Wallach spaces. Their isometry classes are described by continuous families of real parameters. The authors derive necessary and sufficient conditions for the existence of compact quotients of Cahen-Wallach spaces in terms of these parameters.

Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces

Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces
Author: Luigi Ambrosio
Publisher: American Mathematical Soc.
Total Pages: 134
Release: 2020-02-13
Genre: Education
ISBN: 1470439131

The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD∗(K,N) condition of Bacher-Sturm.

Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves

Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves
Author: Massimiliano Berti
Publisher: American Mathematical Soc.
Total Pages: 184
Release: 2020-04-03
Genre: Education
ISBN: 1470440695

The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type
Author: Carles Broto
Publisher: American Mathematical Soc.
Total Pages: 176
Release: 2020-02-13
Genre: Education
ISBN: 1470437724

For a finite group G of Lie type and a prime p, the authors compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG∧p in terms of Out(G).

Hodge Ideals

Hodge Ideals
Author: Mircea Mustaţă
Publisher: American Mathematical Soc.
Total Pages: 92
Release: 2020-02-13
Genre: Education
ISBN: 1470437813

The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.