Genetic Algorithms and Genetic Programming in Computational Finance

Genetic Algorithms and Genetic Programming in Computational Finance
Author: Shu-Heng Chen
Publisher: Springer Science & Business Media
Total Pages: 491
Release: 2012-12-06
Genre: Business & Economics
ISBN: 1461508355

After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.

Genetic Algorithms and Applications for Stock Trading Optimization

Genetic Algorithms and Applications for Stock Trading Optimization
Author: Kapoor, Vivek
Publisher: IGI Global
Total Pages: 262
Release: 2021-06-25
Genre: Computers
ISBN: 1799841065

Genetic algorithms (GAs) are based on Darwin’s theory of natural selection and survival of the fittest. They are designed to competently look for solutions to big and multifaceted problems. Genetic algorithms are wide groups of interrelated events with divided steps. Each step has dissimilarities, which leads to a broad range of connected actions. Genetic algorithms are used to improve trading systems, such as to optimize a trading rule or parameters of a predefined multiple indicator market trading system. Genetic Algorithms and Applications for Stock Trading Optimization is a complete reference source to genetic algorithms that explains how they might be used to find trading strategies, as well as their use in search and optimization. It covers the functions of genetic algorithms internally, computer implementation of pseudo-code of genetic algorithms in C++, technical analysis for stock market forecasting, and research outcomes that apply in the stock trading system. This book is ideal for computer scientists, IT specialists, data scientists, managers, executives, professionals, academicians, researchers, graduate-level programs, research programs, and post-graduate students of engineering and science.

Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms

Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms
Author: Management Association, Information Resources
Publisher: IGI Global
Total Pages: 1534
Release: 2020-12-05
Genre: Computers
ISBN: 1799880990

Genetic programming is a new and evolutionary method that has become a novel area of research within artificial intelligence known for automatically generating high-quality solutions to optimization and search problems. This automatic aspect of the algorithms and the mimicking of natural selection and genetics makes genetic programming an intelligent component of problem solving that is highly regarded for its efficiency and vast capabilities. With the ability to be modified and adapted, easily distributed, and effective in large-scale/wide variety of problems, genetic algorithms and programming can be utilized in many diverse industries. This multi-industry uses vary from finance and economics to business and management all the way to healthcare and the sciences. The use of genetic programming and algorithms goes beyond human capabilities, enhancing the business and processes of various essential industries and improving functionality along the way. The Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms covers the implementation, tools and technologies, and impact on society that genetic programming and algorithms have had throughout multiple industries. By taking a multi-industry approach, this book covers the fundamentals of genetic programming through its technological benefits and challenges along with the latest advancements and future outlooks for computer science. This book is ideal for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.

Natural Computing in Computational Finance

Natural Computing in Computational Finance
Author: Anthony Brabazon
Publisher: Springer Science & Business Media
Total Pages: 220
Release: 2010-06-09
Genre: Computers
ISBN: 3642139493

The chapters in this book illustrate the application of a range of cutting-edge natural computing and agent-based methodologies in computational finance and economics. The eleven chapters were selected following a rigorous, peer-reviewed, selection process.

Computational Finance

Computational Finance
Author: Argimiro Arratia
Publisher: Springer Science & Business Media
Total Pages: 305
Release: 2014-05-08
Genre: Computers
ISBN: 9462390703

The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to compute are also described.

Handbook of Financial Engineering

Handbook of Financial Engineering
Author: Constantin Zopounidis
Publisher: Springer Science & Business Media
Total Pages: 494
Release: 2010-07-25
Genre: Business & Economics
ISBN: 0387766820

This comprehensive handbook discusses the most recent advances within the field of financial engineering, focusing not only on the description of the existing areas in financial engineering research, but also on the new methodologies that have been developed for modeling and addressing financial engineering problems. The book is intended for financial engineers, researchers, applied mathematicians, and graduate students interested in real-world applications to financial engineering.

Computational Finance 1999

Computational Finance 1999
Author: Yaser S. Abu-Mostafa
Publisher: MIT Press
Total Pages: 744
Release: 2000
Genre: Business & Economics
ISBN: 9780262511070

This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.

Tools for Computational Finance

Tools for Computational Finance
Author: Rüdiger U. Seydel
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2009-04-03
Genre: Business & Economics
ISBN: 3540929290

Tools for Computational Finance offers a clear explanation of computational issues arising in financial mathematics. The new third edition is thoroughly revised and significantly extended, including an extensive new section on analytic methods, focused mainly on interpolation approach and quadratic approximation. Other new material is devoted to risk-neutrality, early-exercise curves, multidimensional Black-Scholes models, the integral representation of options and the derivation of the Black-Scholes equation. New figures, more exercises, and expanded background material make this guide a real must-to-have for everyone working in the world of financial engineering.

The Oxford Handbook of Computational Economics and Finance

The Oxford Handbook of Computational Economics and Finance
Author: Shu-Heng Chen
Publisher: Oxford University Press
Total Pages: 785
Release: 2018-01-12
Genre: Business & Economics
ISBN: 0199844380

The Oxford Handbook of Computational Economics and Finance provides a survey of both the foundations of and recent advances in the frontiers of analysis and action. It is both historically and interdisciplinarily rich and also tightly connected to the rise of digital society. It begins with the conventional view of computational economics, including recent algorithmic development in computing rational expectations, volatility, and general equilibrium. It then moves from traditional computing in economics and finance to recent developments in natural computing, including applications of nature-inspired intelligence, genetic programming, swarm intelligence, and fuzzy logic. Also examined are recent developments of network and agent-based computing in economics. How these approaches are applied is examined in chapters on such subjects as trading robots and automated markets. The last part deals with the epistemology of simulation in its trinity form with the integration of simulation, computation, and dynamics. Distinctive is the focus on natural computationalism and the examination of the implications of intelligent machines for the future of computational economics and finance. Not merely individual robots, but whole integrated systems are extending their "immigration" to the world of Homo sapiens, or symbiogenesis.

Handbook of Research on Nature-Inspired Computing for Economics and Management

Handbook of Research on Nature-Inspired Computing for Economics and Management
Author: Rennard, Jean-Philippe
Publisher: IGI Global
Total Pages: 1066
Release: 2006-09-30
Genre: Business & Economics
ISBN: 1591409853

"This book provides applications of nature inspired computing for economic theory and practice, finance and stock-market, manufacturing systems, marketing, e-commerce, e-auctions, multi-agent systems and bottom-up simulations for social sciences and operations management"--Provided by publisher.