Generalized Functions and Partial Differential Equations

Generalized Functions and Partial Differential Equations
Author: Avner Friedman
Publisher: Courier Corporation
Total Pages: 22
Release: 2011-11-30
Genre: Mathematics
ISBN: 048615291X

This self-contained text details developments in the theory of generalized functions and the theory of distributions, and it systematically applies them to a variety of problems in partial differential equations. 1963 edition.

Generalized Functions Theory and Technique

Generalized Functions Theory and Technique
Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
Total Pages: 474
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468400355

This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

Generalized Functions and Fourier Analysis

Generalized Functions and Fourier Analysis
Author: Michael Oberguggenberger
Publisher: Birkhäuser
Total Pages: 280
Release: 2017-05-06
Genre: Mathematics
ISBN: 3319519115

This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.

Geometric Theory of Generalized Functions with Applications to General Relativity

Geometric Theory of Generalized Functions with Applications to General Relativity
Author: M. Grosser
Publisher: Springer Science & Business Media
Total Pages: 517
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401598452

Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.

Operational Calculus and Generalized Functions

Operational Calculus and Generalized Functions
Author: Arthur Erdelyi
Publisher: Courier Corporation
Total Pages: 114
Release: 2013-07-24
Genre: Mathematics
ISBN: 0486316327

Suitable for advanced undergraduates and graduate students, this brief monograph examines elementary and convergence theories of convolution quotients, differential equations involving operator functions, exponential functions of operators. Solutions. 1962 edition.

Principles of Partial Differential Equations

Principles of Partial Differential Equations
Author: Alexander Komech
Publisher: Springer Science & Business Media
Total Pages: 165
Release: 2009-10-05
Genre: Mathematics
ISBN: 1441910956

This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Partial Differential Equations

Partial Differential Equations
Author: Avner Friedman
Publisher: Courier Corporation
Total Pages: 276
Release: 2008-11-24
Genre: Mathematics
ISBN: 0486469190

Largely self-contained, this three-part treatment focuses on elliptic and evolution equations, concluding with a series of independent topics directly related to the methods and results of the preceding sections. 1969 edition.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2010-11-02
Genre: Mathematics
ISBN: 0387709142

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Generalized Solutions of Functional Differential Equations

Generalized Solutions of Functional Differential Equations
Author: Joseph Wiener
Publisher: World Scientific
Total Pages: 428
Release: 1993
Genre: Mathematics
ISBN: 9789810212070

The need to investigate functional differential equations with discontinuous delays is addressed in this book. Recording the work and findings of several scientists on differential equations with piecewise continuous arguments over the last few years, this book serves as a useful source of reference. Great interest is placed on discussing the stability, oscillation and periodic properties of the solutions. Considerable attention is also given to the study of initial and boundary-value problems for partial differential equations of mathematical physics with discontinuous time delays. In fact, a large part of the book is devoted to the exploration of differential and functional differential equations in spaces of generalized functions (distributions) and contains a wealth of new information in this area. Each topic discussed appears to provide ample opportunity for extending the known results. A list of new research topics and open problems is also included as an update.

Handbook of Function and Generalized Function Transformations

Handbook of Function and Generalized Function Transformations
Author: Ahmed I. Zayed
Publisher: CRC Press
Total Pages: 684
Release: 1996-05-15
Genre: Mathematics
ISBN: 9780849378515

Function transformations, which include linear integral transformations, are some of the most important mathematical tools for solving problems in all areas of engineering and the physical sciences. They allow one to quickly solve a problem by breaking it down into a series of smaller, more manageable problems. The author has compiled the most important and widely used of these function transforms in applied mathematics and electrical engineering. In addition to classical transforms, newer transforms such as wavelets, Zak, and Radon are included. The book is neither a table of transforms nor a textbook, but it is a source book that provides quick and easy access to the most important properties and formulas of function and generalized function transformations. It is organized for convenient reference, with chapters broken down into the following sections: