Generalizability Theory

Generalizability Theory
Author: Robert L. Brennan
Publisher: Springer Science & Business Media
Total Pages: 564
Release: 2001-08-09
Genre: Education
ISBN: 9780387952826

Generalizability theory offers an extensive conceptual framework and a powerful set of statistical procedures for characterizing and quantifying the fallibility of measurements. Robert Brennan, the author, has written the most comprehensive and up-to-date treatment of generalizability theory. The book provides a synthesis of those parts of the statistical literature that are directly applicable to generalizability theory. The principal intended audience is measurement practitioners and graduate students in the behavioral and social sciences, although a few examples and references are provided from other fields. Readers will benefit from some familiarity with classical test theory and analysis of variance, but the treatment of most topics does not presume specific background.

Generalizability Theory

Generalizability Theory
Author: Richard J. Shavelson
Publisher: SAGE
Total Pages: 156
Release: 1991-07-23
Genre: Mathematics
ISBN: 9780803937451

In this volume, Shavelson and Webb offer an intuitive development of generalizability theory and cover a wide variety of topics such as generalizability studies with nested facets and with fixed facets, measurement error and generalizability coefficients, and decision studies with same and with different designs. Detailed illustrations, examples and exercises all serve to clearly describe the logic underlying major concepts in generalizability theory and assist readers in applying these methods when investigating the consistency of their own measurements.

Applying Generalizability Theory using EduG

Applying Generalizability Theory using EduG
Author: Jean Cardinet
Publisher: Taylor & Francis
Total Pages: 235
Release: 2011-03-04
Genre: Psychology
ISBN: 1135240337

Intended to help improve measurement and data collection methods in the behavioral, social, and medical sciences, this book demonstrates an expanded and accessible use of Generalizability Theory (G theory). G theory conceptually models the way in which the reliability of measurement is ascertained. Sources of score variation are identified as potential contributors to measurement error and taken into account accordingly. The authors demonstrate the powerful potential of G theory by showing how to improve the quality of any kind of measurement, regardless of the discipline. Readers will appreciate the conversational style used to present a comprehensive review of G theory and its application using the freeware EduG. To maximize understanding the authors illustrate all fundamental principles with concrete examples from different fields and contexts. Annotated applications lead students through the main concepts of G theory, while illustrating both the use of EduG and interpretation of its output. Formulas are avoided wherever possible. Exercises with data sets available on the Psychology Press website allow readers to carry out their own analyses to reinforce understanding. Brief overviews of analysis of variance, estimation, and the statistical error model are provided for review. The procedures involved in carrying out a generalizability study using EduG follow, as well as guidance in the interpretation of results. Real-world applications of G theory to the assessment of depression, managerial ability, attitudes, and writing and mathematical skills are then presented. Next, annotated exercises provide an opportunity for readers to use EduG and interpret its results. The book concludes with a review of the development of G theory and possible new directions of application. Finally, for those with a strong statistical background, the appendixes provide the formulas used by EduG. Ideal as a supplement for courses on measurement theory and/or generalizability theory taught in departments of psychology, education, medicine, and the social sciences, this text will also appeal to researchers from a variety of fields interested in learning how to apply G theory to their studies.

Generalizability Theory

Generalizability Theory
Author: Robert L. Brennan
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2013-11-11
Genre: Social Science
ISBN: 1475734565

Generalizability theory offers an extensive conceptual framework and a powerful set of statistical procedures for characterizing and quantifying the fallibility of measurements. Robert Brennan, the author, has written the most comprehensive and up-to-date treatment of generalizability theory. The book provides a synthesis of those parts of the statistical literature that are directly applicable to generalizability theory. The principal intended audience is measurement practitioners and graduate students in the behavioral and social sciences, although a few examples and references are provided from other fields. Readers will benefit from some familiarity with classical test theory and analysis of variance, but the treatment of most topics does not presume specific background.

Psychometric Methods

Psychometric Methods
Author: Larry R. Price
Publisher: Guilford Publications
Total Pages: 569
Release: 2016-12-12
Genre: Social Science
ISBN: 146252477X

Grounded in current knowledge and professional practice, this book provides up-to-date coverage of psychometric theory, methods, and interpretation of results. Essential topics include measurement and statistical concepts, scaling models, test design and development, reliability, validity, factor analysis, item response theory, and generalizability theory. Also addressed are norming and test equating, topics not typically covered in traditional psychometrics texts. Examples drawn from a dataset on intelligence testing are used throughout the book, elucidating the assumptions underlying particular methods and providing SPSS (or alternative) syntax for conducting analyses. The companion website presents datasets for all examples as well as PowerPoint slides of figures and key concepts. Pedagogical features include equation boxes with explanations of statistical notation, and end-of-chapter glossaries. The Appendix offers extensions of the topical chapters with example source code from SAS, SPSS, IRTPRO, BILOG-MG, PARSCALE, TESTFACT, and DIMTEST.

Introduction to Psychometric Theory

Introduction to Psychometric Theory
Author: Tenko Raykov
Publisher: Routledge
Total Pages: 602
Release: 2011-01-07
Genre: Psychology
ISBN: 1136900020

This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today’s actual testing situations. To reflect the growing use of statistical software in psychometrics, the authors introduce the use of Mplus after the first few chapters. IBM SPSS, SAS, and R are also featured in several chapters. Software codes and associated outputs are reviewed throughout to enhance comprehension. Essentially all of the data used in the book are available on the website. In addition instructors will find helpful PowerPoint lecture slides and questions and problems for each chapter. The authors rely on LVM when discussing fundamental concepts such as exploratory and confirmatory factor analysis, test theory, generalizability theory, reliability and validity, interval estimation, nonlinear factor analysis, generalized linear modeling, and item response theory. The varied applications make this book a valuable tool for those in the behavioral, social, educational, and biomedical disciplines, as well as in business, economics, and marketing. A brief introduction to R is also provided. Intended as a text for advanced undergraduate and/or graduate courses in psychometrics, testing and measurement, measurement theory, psychological testing, and/or educational and/or psychological measurement taught in departments of psychology, education, human development, epidemiology, business, and marketing, it will also appeal to researchers in these disciplines. Prerequisites include an introduction to statistics with exposure to regression analysis and ANOVA. Familiarity with SPSS, SAS, STATA, or R is also beneficial. As a whole, the book provides an invaluable introduction to measurement and test theory to those with limited or no familiarity with the mathematical and statistical procedures involved in measurement and testing.

Measurement Theory and Applications for the Social Sciences

Measurement Theory and Applications for the Social Sciences
Author: Deborah L. Bandalos
Publisher: Guilford Publications
Total Pages: 686
Release: 2018-01-31
Genre: Social Science
ISBN: 1462532136

Which types of validity evidence should be considered when determining whether a scale is appropriate for a given measurement situation? What about reliability evidence? Using clear explanations illustrated by examples from across the social and behavioral sciences, this engaging text prepares students to make effective decisions about the selection, administration, scoring, interpretation, and development of measurement instruments. Coverage includes the essential measurement topics of scale development, item writing and analysis, and reliability and validity, as well as more advanced topics such as exploratory and confirmatory factor analysis, item response theory, diagnostic classification models, test bias and fairness, standard setting, and equating. End-of-chapter exercises (with answers) emphasize both computations and conceptual understanding to encourage readers to think critically about the material. ÿ

Handbook of Applied Multivariate Statistics and Mathematical Modeling

Handbook of Applied Multivariate Statistics and Mathematical Modeling
Author: Howard E.A. Tinsley
Publisher: Academic Press
Total Pages: 751
Release: 2000-05-22
Genre: Mathematics
ISBN: 0080533566

Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.