Inference in Hidden Markov Models

Inference in Hidden Markov Models
Author: Olivier Cappé
Publisher: Springer Science & Business Media
Total Pages: 656
Release: 2006-04-12
Genre: Mathematics
ISBN: 0387289828

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Probability Theory and Mathematical Statistics

Probability Theory and Mathematical Statistics
Author: B. Grigelionis
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 752
Release: 2020-05-18
Genre: Mathematics
ISBN: 311231932X

No detailed description available for "Probability Theory and Mathematical Statistics".

Approximating Integrals via Monte Carlo and Deterministic Methods

Approximating Integrals via Monte Carlo and Deterministic Methods
Author: Michael Evans
Publisher: OUP Oxford
Total Pages: 302
Release: 2000-03-23
Genre: Mathematics
ISBN: 019158987X

This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher- dimensional integrals the lower-dimensional case is also covered. Included in the book are asymptotic techniques, multiple quadrature and quasi-random techniques as well as a complete development of Monte Carlo algorithms. For the Monte Carlo section importance sampling methods, variance reduction techniques and the primary Markov Chain Monte Carlo algorithms are covered. This book brings these various techniques together for the first time, and hence provides an accessible textbook and reference for researchers in a wide variety of disciplines.

Evolutionary Equations with Applications in Natural Sciences

Evolutionary Equations with Applications in Natural Sciences
Author: Jacek Banasiak
Publisher: Springer
Total Pages: 505
Release: 2014-11-07
Genre: Mathematics
ISBN: 3319113224

With the unifying theme of abstract evolutionary equations, both linear and nonlinear, in a complex environment, the book presents a multidisciplinary blend of topics, spanning the fields of theoretical and applied functional analysis, partial differential equations, probability theory and numerical analysis applied to various models coming from theoretical physics, biology, engineering and complexity theory. Truly unique features of the book are: the first simultaneous presentation of two complementary approaches to fragmentation and coagulation problems, by weak compactness methods and by using semigroup techniques, comprehensive exposition of probabilistic methods of analysis of long term dynamics of dynamical systems, semigroup analysis of biological problems and cutting edge pattern formation theory. The book will appeal to postgraduate students and researchers specializing in applications of mathematics to problems arising in natural sciences and engineering.

Introduction to Bayesian Econometrics

Introduction to Bayesian Econometrics
Author: Edward Greenberg
Publisher: Cambridge University Press
Total Pages: 271
Release: 2013
Genre: Business & Economics
ISBN: 1107015316

This textbook explains the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It defines the likelihood function, prior distributions and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The new edition also emphasizes the R programming language.

Introduction to Stochastic Models

Introduction to Stochastic Models
Author: Marius Iosifescu
Publisher: John Wiley & Sons
Total Pages: 258
Release: 2013-03-04
Genre: Mathematics
ISBN: 1118623525

This book provides a pedagogical examination of the way in which stochastic models are encountered in applied sciences and techniques such as physics, engineering, biology and genetics, economics and social sciences. It covers Markov and semi-Markov models, as well as their particular cases: Poisson, renewal processes, branching processes, Ehrenfest models, genetic models, optimal stopping, reliability, reservoir theory, storage models, and queuing systems. Given this comprehensive treatment of the subject, students and researchers in applied sciences, as well as anyone looking for an introduction to stochastic models, will find this title of invaluable use.