History of Seismograms and Earthquakes of the World

History of Seismograms and Earthquakes of the World
Author: William Hung Kan Lee
Publisher: Academic Press
Total Pages: 536
Release: 1988-01-28
Genre: Science
ISBN:

Key Features * Historical seisograms are extremely important in establishing a long-term database and in supplementing more recent information obtained by global seismic networks; The papers presented here address awide range of historical earthquake research and discuss earthquake data from around the world, which has until now remained largely inaccessible; Topics include: * importance of historical seismograms for geophysical research * historical seismograms and interpretation of strong earthquakes * application of modern techniques to analysis of historical earthquakes

Frobenius Splitting Methods in Geometry and Representation Theory

Frobenius Splitting Methods in Geometry and Representation Theory
Author: Michel Brion
Publisher: Springer Science & Business Media
Total Pages: 259
Release: 2007-08-08
Genre: Mathematics
ISBN: 0817644059

Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.

D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory
Author: Ryoshi Hotta
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 2007-11-07
Genre: Mathematics
ISBN: 081764363X

D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.

Analysis of Dirac Systems and Computational Algebra

Analysis of Dirac Systems and Computational Algebra
Author: Fabrizio Colombo
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2012-12-06
Genre: Mathematics
ISBN: 0817681663

* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics

Advanced Algebra

Advanced Algebra
Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
Total Pages: 757
Release: 2007-10-11
Genre: Mathematics
ISBN: 0817646132

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.

Polynomial Convexity

Polynomial Convexity
Author: Edgar Lee Stout
Publisher: Springer Science & Business Media
Total Pages: 454
Release: 2007-05-03
Genre: Mathematics
ISBN: 0817645373

This comprehensive monograph details polynomially convex sets. It presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets. Coverage examines in considerable detail questions of uniform approximation for the most part on compact sets but with some attention to questions of global approximation on noncompact sets. The book also discusses important applications and motivates the reader with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries.

Geometric Methods in Algebra and Number Theory

Geometric Methods in Algebra and Number Theory
Author: Fedor Bogomolov
Publisher: Springer Science & Business Media
Total Pages: 365
Release: 2006-06-22
Genre: Mathematics
ISBN: 0817644172

* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry