Galois Theory Through Exercises

Galois Theory Through Exercises
Author: Juliusz Brzeziński
Publisher: Springer
Total Pages: 296
Release: 2018-03-21
Genre: Mathematics
ISBN: 331972326X

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.

Foundations of Galois Theory

Foundations of Galois Theory
Author: M.M. Postnikov
Publisher: Elsevier
Total Pages: 123
Release: 2014-07-10
Genre: Mathematics
ISBN: 1483156478

Foundations of Galois Theory is an introduction to group theory, field theory, and the basic concepts of abstract algebra. The text is divided into two parts. Part I presents the elements of Galois Theory, in which chapters are devoted to the presentation of the elements of field theory, facts from the theory of groups, and the applications of Galois Theory. Part II focuses on the development of general Galois Theory and its use in the solution of equations by radicals. Equations that are solvable by radicals; the construction of equations solvable by radicals; and the unsolvability by radicals of the general equation of degree n ? 5 are discussed as well. Mathematicians, physicists, researchers, and students of mathematics will find this book highly useful.

Field and Galois Theory

Field and Galois Theory
Author: Patrick Morandi
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461240409

In the fall of 1990, I taught Math 581 at New Mexico State University for the first time. This course on field theory is the first semester of the year-long graduate algebra course here at NMSU. In the back of my mind, I thought it would be nice someday to write a book on field theory, one of my favorite mathematical subjects, and I wrote a crude form of lecture notes that semester. Those notes sat undisturbed for three years until late in 1993 when I finally made the decision to turn the notes into a book. The notes were greatly expanded and rewritten, and they were in a form sufficient to be used as the text for Math 581 when I taught it again in the fall of 1994. Part of my desire to write a textbook was due to the nonstandard format of our graduate algebra sequence. The first semester of our sequence is field theory. Our graduate students generally pick up group and ring theory in a senior-level course prior to taking field theory. Since we start with field theory, we would have to jump into the middle of most graduate algebra textbooks. This can make reading the text difficult by not knowing what the author did before the field theory chapters. Therefore, a book devoted to field theory is desirable for us as a text. While there are a number of field theory books around, most of these were less complete than I wanted.

Galois Theory And Applications: Solved Exercises And Problems

Galois Theory And Applications: Solved Exercises And Problems
Author: Mohamed Ayad
Publisher: World Scientific Publishing Company
Total Pages: 450
Release: 2018-04-26
Genre: Mathematics
ISBN: 9813238321

'Ayad’s aim was to create a collection of problems and exercises related to Galois Theory. In this Ayad was certainly successful. Galois Theory and Applications contains almost 450 pages of problems and their solutions. These problems range from the routine and concrete to the very abstract. Many are quite challenging. Some of the problems provide accessible presentations of material not normally seen in a first course on Galois Theory. For example, the chapter 'Galois extensions, Galois groups' begins with a wonderful problem on formally real fields that I plan on assigning to my students this fall.'MAA ReviewsThe book provides exercises and problems with solutions in Galois Theory and its applications, which include finite fields, permutation polynomials, derivations and algebraic number theory.It will be useful to the audience below:

Classical Galois Theory with Examples

Classical Galois Theory with Examples
Author: Lisl Gaal
Publisher: American Mathematical Soc.
Total Pages: 258
Release: 1998
Genre: Mathematics
ISBN: 0821813757

Galois theory is one of the most beautiful subjects in mathematics, but it is heard to appreciate this fact fully without seeing specific examples. Numerous examples are therefore included throughout the text, in the hope that they will lead to a deeper understanding and genuine appreciation of the more abstract and advanced literature on Galois theory. This book is intended for beginning graduate students who already have some background in algebra, including some elementary theoryof groups, rings and fields. The expositions and proofs are intended to present Galois theory in as simple a manner as possible, sometimes at the expense of brevity. The book is for students and intends to make them take an active part in mathematics rather than merely read, nod their heads atappropriate places, skip the exercises, and continue on to the next section.

Differential Galois Theory through Riemann-Hilbert Correspondence

Differential Galois Theory through Riemann-Hilbert Correspondence
Author: Jacques Sauloy
Publisher: American Mathematical Soc.
Total Pages: 303
Release: 2016-12-07
Genre: Mathematics
ISBN: 1470430959

Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equations, the main prerequisites are complex function theory, linear algebra, and an elementary knowledge of groups and of polynomials in many variables. A large variety of examples, exercises, and theoretical constructions, often via explicit computations, offers first-year graduate students an accessible entry into this exciting area.

Exploratory Galois Theory

Exploratory Galois Theory
Author: John Swallow
Publisher: Cambridge University Press
Total Pages: 224
Release: 2004-10-11
Genre: Computers
ISBN: 9780521544993

Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.

Fields and Galois Theory

Fields and Galois Theory
Author: John M. Howie
Publisher: Springer Science & Business Media
Total Pages: 230
Release: 2007-10-11
Genre: Mathematics
ISBN: 1852339861

A modern and student-friendly introduction to this popular subject: it takes a more "natural" approach and develops the theory at a gentle pace with an emphasis on clear explanations Features plenty of worked examples and exercises, complete with full solutions, to encourage independent study Previous books by Howie in the SUMS series have attracted excellent reviews

Galois Theory

Galois Theory
Author: Steven H. Weintraub
Publisher: Springer Science & Business Media
Total Pages: 220
Release: 2008-10-20
Genre: Mathematics
ISBN: 0387875751

Galois theory is a mature mathematical subject of particular beauty. Any Galois theory book written nowadays bears a great debt to Emil Artin’s classic text "Galois Theory," and this book is no exception. While Artin’s book pioneered an approach to Galois theory that relies heavily on linear algebra, this book’s author takes the linear algebra emphasis even further. This special approach to the subject together with the clarity of its presentation, as well as the choice of topics covered, has made the first edition of this book a more than worthwhile addition to the literature on Galois Theory. The second edition, with a new chapter on transcendental extensions, will only further serve to make the book appreciated by and approachable to undergraduate and beginning graduate math majors.

A Course in Galois Theory

A Course in Galois Theory
Author: D. J. H. Garling
Publisher: Cambridge University Press
Total Pages: 180
Release: 1986
Genre: Mathematics
ISBN: 9780521312493

This textbook, based on lectures given over a period of years at Cambridge, is a detailed and thorough introduction to Galois theory.