Fundamentals of the Theory of Operator Algebras. Volume III

Fundamentals of the Theory of Operator Algebras. Volume III
Author: Richard V. Kadison
Publisher: American Mathematical Soc.
Total Pages: 290
Release: 1998-01-13
Genre: Mathematics
ISBN: 0821894692

This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.

Theory of Operator Algebras I

Theory of Operator Algebras I
Author: Masamichi Takesaki
Publisher: Springer Science & Business Media
Total Pages: 424
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461261880

Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.

Operator Algebras

Operator Algebras
Author: Bruce Blackadar
Publisher: Springer Science & Business Media
Total Pages: 530
Release: 2006-03-09
Genre: Mathematics
ISBN: 3540285172

This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.

C*-Algebras and Operator Theory

C*-Algebras and Operator Theory
Author: Gerald J. Murphy
Publisher: Academic Press
Total Pages: 297
Release: 2014-06-28
Genre: Mathematics
ISBN: 0080924964

This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

Vertex Operator Algebras and the Monster

Vertex Operator Algebras and the Monster
Author: Igor Frenkel
Publisher: Academic Press
Total Pages: 563
Release: 1989-05-01
Genre: Mathematics
ISBN: 0080874541

This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."

Introduction to Vertex Operator Algebras and Their Representations

Introduction to Vertex Operator Algebras and Their Representations
Author: James Lepowsky
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 2012-12-06
Genre: Mathematics
ISBN: 0817681868

* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.

Real Operator Algebras

Real Operator Algebras
Author: Bingren Li
Publisher: World Scientific
Total Pages: 264
Release: 2003
Genre: Mathematics
ISBN: 9789812795182

Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras,

Foundations of Quantum Theory

Foundations of Quantum Theory
Author: Klaas Landsman
Publisher:
Total Pages: 880
Release: 2020-10-09
Genre: Science
ISBN: 9781013278365

This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

K-Theory for Operator Algebras

K-Theory for Operator Algebras
Author: Bruce Blackadar
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461395720

K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.

Modular Theory in Operator Algebras

Modular Theory in Operator Algebras
Author: Serban Stratila
Publisher: Cambridge University Press
Total Pages: 461
Release: 2020-12-03
Genre: Mathematics
ISBN: 1108489605

The first edition of this book appeared in 1981 as a direct continuation of Lectures of von Neumann Algebras (by Ş.V. Strătilă and L. Zsid ) and, until 2003, was the only comprehensive monograph on the subject. Addressing the students of mathematics and physics and researchers interested in operator algebras, noncommutative geometry and free probability, this revised edition covers the fundamentals and latest developments in the field of operator algebras. It discusses the group-measure space construction, Krieger factors, infinite tensor products of factors of type I (ITPFI factors) and construction of the type III_1 hyperfinite factor. It also studies the techniques necessary for continuous and discrete decomposition, duality theory for noncommutative groups, discrete decomposition of Connes, and Ocneanu's result on the actions of amenable groups. It contains a detailed consideration of groups of automorphisms and their spectral theory, and the theory of crossed products.