Fundamentals Of The Theory Of Operator Algebras Vol 4
Download Fundamentals Of The Theory Of Operator Algebras Vol 4 full books in PDF, epub, and Kindle. Read online free Fundamentals Of The Theory Of Operator Algebras Vol 4 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Richard V. Kadison |
Publisher | : American Mathematical Soc. |
Total Pages | : 290 |
Release | : 1998-01-13 |
Genre | : Mathematics |
ISBN | : 0821894692 |
This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.
Author | : Richard V. Kadison |
Publisher | : American Mathematical Soc. |
Total Pages | : 604 |
Release | : 1998-01-13 |
Genre | : Mathematics |
ISBN | : 0821894684 |
This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume II--Advanced Theory (Graduate Studies in Mathematics series, Volume 16). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume II--Advanced Theory.
Author | : Masamichi Takesaki |
Publisher | : Springer Science & Business Media |
Total Pages | : 424 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461261880 |
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Author | : Bruce Blackadar |
Publisher | : Springer Science & Business Media |
Total Pages | : 530 |
Release | : 2006-03-09 |
Genre | : Mathematics |
ISBN | : 3540285172 |
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Author | : KADISON |
Publisher | : Springer Science & Business Media |
Total Pages | : 599 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461229685 |
These volumes are companions to the treatise; "Fundamentals of the Theory of Operator Algebras," which appeared as Volume 100 - I and II in the series, Pure and Applied Mathematics, published by Academic Press in 1983 and 1986, respectively. As stated in the preface to those volumes, "Their primary goal is to teach the sub ject and lead the reader to the point where the vast recent research literature, both in the subject proper and in its many applications, becomes accessible." No attempt was made to be encyclopcedic; the choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. By way of supplementing the topics selected for presentation in "Fundamentals," a substantial list of exercises comprises the last section of each chapter. An equally important purpose of those exer cises is to develop "hand-on" skills in use ofthe techniques appearing in the text. As a consequence, each exercise was carefully designed to depend only on the material that precedes it, and separated into segments each of which is realistically capable of solution by an at tentive, diligent, well-motivated reader.
Author | : Igor Frenkel |
Publisher | : Academic Press |
Total Pages | : 563 |
Release | : 1989-05-01 |
Genre | : Mathematics |
ISBN | : 0080874541 |
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
Author | : James Lepowsky |
Publisher | : Springer Science & Business Media |
Total Pages | : 330 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 0817681868 |
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Author | : Richard V. Kadison |
Publisher | : American Mathematical Soc. |
Total Pages | : 416 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 0821808192 |
The first volume of a two-volume text for an intermediate graduate course or for self-study for students familiar with basic measure theory and topology. Volume one covers linear spaces, Hilbert space and linear operators, Banach algebras, C*- algebra theory, and von Neumann algebra theory. The volumes are numbered consecutively but indexed separately. Volume one was originally published by Academic Press in 1983. Annotation copyrighted by Book News, Inc., Portland, OR
Author | : John B. Conway |
Publisher | : American Mathematical Soc. |
Total Pages | : 390 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821820656 |
Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.
Author | : Gerald J. Murphy |
Publisher | : Academic Press |
Total Pages | : 297 |
Release | : 2014-06-28 |
Genre | : Mathematics |
ISBN | : 0080924964 |
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.