Fundamentals Of The Theory Of Operator Algebras V2
Download Fundamentals Of The Theory Of Operator Algebras V2 full books in PDF, epub, and Kindle. Read online free Fundamentals Of The Theory Of Operator Algebras V2 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Richard V. Kadison |
Publisher | : American Mathematical Soc. |
Total Pages | : 290 |
Release | : 1998-01-13 |
Genre | : Mathematics |
ISBN | : 0821894692 |
This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.
Author | : Masamichi Takesaki |
Publisher | : Springer Science & Business Media |
Total Pages | : 424 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461261880 |
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Author | : Richard V. Kadison |
Publisher | : American Mathematical Soc. |
Total Pages | : 702 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 9780821808207 |
Volume two of the two-volume set (see ISBN 0-8218-0819-2) covers the comparison theory of projection, normal states and unitary equivalence of von Newmann algebras, the trade, algebra and commutant, special representation of C*-algebras, tensor products, approximation by matrix algebras, crossed products, and direct integrals and decompositions. Originally published by Academic Press in 1986. Annotation copyrighted by Book News, Inc., Portland, OR
Author | : |
Publisher | : Academic Press |
Total Pages | : 691 |
Release | : 1986-06-10 |
Genre | : Mathematics |
ISBN | : 0080874177 |
Fundamentals of the Theory of Operator Algebras. V2
Author | : Bruce Blackadar |
Publisher | : Springer Science & Business Media |
Total Pages | : 530 |
Release | : 2006-03-09 |
Genre | : Mathematics |
ISBN | : 3540285172 |
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Author | : Bruce Blackadar |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461395720 |
K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.
Author | : Gerald J. Murphy |
Publisher | : Academic Press |
Total Pages | : 297 |
Release | : 2014-06-28 |
Genre | : Mathematics |
ISBN | : 0080924964 |
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Author | : Igor Frenkel |
Publisher | : Academic Press |
Total Pages | : 563 |
Release | : 1989-05-01 |
Genre | : Mathematics |
ISBN | : 0080874541 |
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
Author | : Serban Stratila |
Publisher | : Cambridge University Press |
Total Pages | : 461 |
Release | : 2020-12-03 |
Genre | : Mathematics |
ISBN | : 1108489605 |
The first edition of this book appeared in 1981 as a direct continuation of Lectures of von Neumann Algebras (by Ş.V. Strătilă and L. Zsid ) and, until 2003, was the only comprehensive monograph on the subject. Addressing the students of mathematics and physics and researchers interested in operator algebras, noncommutative geometry and free probability, this revised edition covers the fundamentals and latest developments in the field of operator algebras. It discusses the group-measure space construction, Krieger factors, infinite tensor products of factors of type I (ITPFI factors) and construction of the type III_1 hyperfinite factor. It also studies the techniques necessary for continuous and discrete decomposition, duality theory for noncommutative groups, discrete decomposition of Connes, and Ocneanu's result on the actions of amenable groups. It contains a detailed consideration of groups of automorphisms and their spectral theory, and the theory of crossed products.
Author | : Carlos S. Kubrusly |
Publisher | : Springer Science & Business Media |
Total Pages | : 535 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475733283 |
{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.