Functions Of One Complex Variable Ii
Download Functions Of One Complex Variable Ii full books in PDF, epub, and Kindle. Read online free Functions Of One Complex Variable Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J.B. Conway |
Publisher | : Springer Science & Business Media |
Total Pages | : 323 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461599725 |
This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.
Author | : Robert Everist Greene |
Publisher | : American Mathematical Soc. |
Total Pages | : 536 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9780821839621 |
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Author | : Henri Cartan |
Publisher | : Courier Corporation |
Total Pages | : 242 |
Release | : 2013-04-22 |
Genre | : Mathematics |
ISBN | : 0486318672 |
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Author | : John B. Conway |
Publisher | : Springer Science & Business Media |
Total Pages | : 404 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461208173 |
This book discusses a variety of problems which are usually treated in a second course on the theory of functions of one complex variable, the level being gauged for graduate students. It treats several topics in geometric function theory as well as potential theory in the plane, covering in particular: conformal equivalence for simply connected regions, conformal equivalence for finitely connected regions, analytic covering maps, de Branges' proof of the Bieberbach conjecture, harmonic functions, Hardy spaces on the disk, potential theory in the plane. A knowledge of integration theory and functional analysis is assumed.
Author | : Albert Baernstein (II) |
Publisher | : American Mathematical Soc. |
Total Pages | : 238 |
Release | : 1986 |
Genre | : Mathematics |
ISBN | : 0821815210 |
Louis de Branges of Purdue University is recognized as the mathematician who proved Bieberbach's conjecture. This book offers insight into the nature of the conjecture, its history and its proof. It is suitable for research mathematicians and analysts.
Author | : Donald Sarason |
Publisher | : American Mathematical Society |
Total Pages | : 177 |
Release | : 2021-02-16 |
Genre | : Mathematics |
ISBN | : 1470463237 |
Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.
Author | : A. I. Markushevich |
Publisher | : American Mathematical Soc. |
Total Pages | : 1178 |
Release | : 2013 |
Genre | : Analytic functions |
ISBN | : 082183780X |
Author | : NARASIMHAN |
Publisher | : Springer Science & Business Media |
Total Pages | : 282 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1475711069 |
This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.
Author | : Robert Clifford Gunning |
Publisher | : American Mathematical Soc. |
Total Pages | : 338 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 0821821652 |
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.
Author | : Elias Wegert |
Publisher | : Springer Science & Business Media |
Total Pages | : 374 |
Release | : 2012-08-30 |
Genre | : Mathematics |
ISBN | : 3034801807 |
This book provides a systematic introduction to functions of one complex variable. Its novel feature is the consistent use of special color representations – so-called phase portraits – which visualize functions as images on their domains. Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes. In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions. Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.